

Relatório de Estabilidade de Taludes – Bacia de Drenagem – Túnel de Taguatinga

BRASÍLIA – DF

OUTUBRO - 2022

RELAÇÃO DE FIGURAS

Figura 1: Área da bacia de drenagem – Túnel de Taguatinga6
Figura 2: Planta da bacia de drenagem e curvas de nível utilizadas7
Figura 3: Superfície do terreno natural da bacia8
Figura 4: Cortes do fundo da bacia até a superfície do terreno natural8
Figura 5: Cortes A e B9
Figura 6: Exemplo de divisão de lamelas do talude17
Figura 7: Resultado da análise no corte A - Seca18
Figura 8: Resultado da análise no corte B - Seca18
Figura 9: Resultado da análise no corte A - Cheia19
Figura 10: Resultado da análise no corte B - Cheia19

RELAÇÃO DE TABELAS

Tabela 1: Critérios utilizados para definição dos cortes9
Tabela 2: Peso específico de solos argilosos - correlações empíricas - uso limitado a estudos
preliminares (Godoy, 1972)10
Tabela 3: Peso específico de solos arenosos - correlações empíricas - uso limitado a estudos
preliminares (Godoy, 1972)10
Tabela 4: Avaliação dos Parâmetros de Resistência e de deformabilidade em Função do SPT -
correlações empíricas - uso limitado a estudos preliminares (adaptado Marangon, 2018)11
Tabela 5: Parâmetros de solo utilizados12
Tabela 6: Fatores de segurança mínimos baseados na NBR 11682/200913
Tabela 7: Nível de segurança desejado contra a perda de vidas humanas
Tabela 8: Nivel de segurança desejado contra danos materiais e ambientais14
Tabela 9: Resumo dos fatores de segurança obtidos nas análises

SUMÁRIO

1	CARACTERIZAÇÃO DA ÁREA EM ESTUDO5					
2	METODOLOGIA UTILIZADA					
	2.1	Definição dos Cortes	7			
	2.2	Parâmetros do Solo	9			
	2.3	Definição do Fator de Segurança	13			
	2.4 Embasamento Teórico					
3	RESU	JLTADOS	17			
	3.1	Resultados das Lagoas Secas	17			
	3.2	Resultados das Lagoas Cheias	19			
	3.3	Resumo das Análises	20			
4	CONS	SIDERAÇÕES FINAIS	22			
5	REFERÊNCIAS					

1 CARACTERIZAÇÃO DA ÁREA EM ESTUDO

Este relatório apresenta os estudos e análises de estabilidade dos taludes da bacia de detenção de drenagem do Túnel de Taguatinga, localizado na Região Administrativa de Tagatinga, Brasília/DF. A localização no Distrito Federal da área de estudo pode ser observada no Mapa de Situação apresentado abaixo.

Mapa de Situação - Riverside Green

A seguir, na Figura 1, podemos visualizar de forma mais precisa, por meio de imagem retirada do *software* Google Earth Pro, a área objeto de estudo, com destaque para a área da bacia.

Figura 1: Área da bacia de drenagem – Túnel de Taguatinga.

2 METODOLOGIA UTILIZADA

A seguir serão expostos os pressupostos utilizados para a modelagem e realização das análises de cada uma das situações estudadas.

O projeto de drenagem da região prevê a realização de uma bacia de drenagem. Para esta bacia foram identificadas as situações mais desfavoráveis para a realização de sua modelagem e verificação do seu fator de segurança por meio de análise computacional. Desta forma, foi buscado identificar os cortes com maiores taludes, maiores áreas de corte e maiores áreas de aterro.

2.1 Definição dos Cortes

O primeiro passo para a definição dos cortes é a modelagem do terreno natural. Para isso, foram utilizadas as curvas de nível utilizadas no projeto de drenagem do parcelamento. Com as curvas de nível e com o auxílio do *software* AutoCAD Civil 3D foi possível modelar a superfície do terreno natural onde se encontram as lagoas. A Figura 2 ilustra o resultado da superfície criada para a bacia de drenagem.

Figura 2: Planta da bacia de drenagem e curvas de nível utilizadas

Figura 3: Superfície do terreno natural da bacia.

Com os resultados da superfície do terreno natural, é possível definir as cotas de fundo das lagoas e determinar as áreas de corte e aterro das bacias. Podemos observar na Figura 4 a modelagem das áreas de corte até a superfície do terreno da bacia de drenagem.

Figura 4: Cortes do fundo da bacia até a superfície do terreno natural.

Com base nos resultados observados das áreas onde deverão ser realizados cortes e aterros, é possíveis definir os cortes onde serão definidos os perfis dos terrenos a serem estudados. Como resultado desta etapa, foram obtidos os cortes de cada bacia observados a seguir. Na Tabela 1 foram descritos os critérios para a definição de cada um dos cortes.

Figura 5: Cortes A e B.

Tabela 1: Critérios utilizados para definição dos cortes.

Corte	Critério Utilizado
A	Maior área de aterro das bacias
В	Maior área de corte das bacias

2.2 Parâmetros do Solo

Para a definição dos parâmetros do solo, foram utilizados os resultados das sondagens e ensaios realizados na etapa de estudos geotécnicos do terreno.

Para as análises realizadas foi utilizado o modelo constitutivo de Mohr-Coulomb para o material do terreno. Desta forma, os ensaios devem fornecer os parâmetros de entrada de coesão (c), ângulo de atrito interno (φ) e peso específico.

Para a obtenção dos parâmetros de coesão e ângulo de atrito foram utilizados os resultados dos ensaios de cisalhamento direto para as camadas até a profundidade da amostra ensaiada, para as demais camadas foram utilizadas correlações adotadas na bibliografia.

Os parâmetros de peso específico do solo foram obtidos por meio dos ensaios de cisalhamento direto e adensamento para os trechos em corte até as profundidades ensaiadas e por meio dos ensaios de compactação para os trechos em aterro. Para as demais camadas, foram utilizadas correlações adotadas na bibliografia, conforme tabelas e equações a seguir.

• Peso específico do solo (γ): Godoy (1972) (Tabela 2 e Tabela 3);

Tabela 2: Peso específico de solos argilosos - correlações empíricas - uso limitado a estudos preliminares (Godoy, 1972).

NSPT	Consistência	Peso específico - γ (kN/m ³)
≤ 2	Muito mole	13
3 – 5	Mole	15
6 – 10	Média	17
11 – 19	Rija	19
≥ 20	Dura	21

Tabela 3: Peso específico de solos arenosos - correlações empíricas - uso limitado a estudos preliminares (Godoy, 1972).

		Peso específico - γ (kN/m ³)			
NSPT	Consistência	Areia seca	Areia úmida	Areia saturada	
< 5	Fofa	16	10	10	
5 – 8	Pouco compacta	10	10	19	
9 – 18	Medianamente compacta	17	19	20	
19 – 40	Compacta	10	20	21	
> 40	Muito compacta	10	20	21	

• Ângulo de atrito (ϕ): Teixeira (1996);

$$\phi = \sqrt{20N_{SPT}} + 15^{\circ} \tag{1}$$

• Coesão (c): Berberian (2015);

$$c = \frac{N_{SPT}}{0.35} \tag{2}$$

Os valores tomados com referência servem para balizar as estimativas feitas e permitem verificar se estão em conformidade com o esperado para cada solo.

		Areias	e solos	arenosos		
Compacidade	Peso específico - γ (kN/m³)	Coesão - c (kPa)	Ângulo de atrito - φ (°)	Módulo de elasticidade – E (kPa)	Coeficiente de Poisson - v	
Fofa	16	0	25 – 30	1000 – 5000		
Pouco compacta	18	0	30 – 35	5000 - 14000		
Medianamente compacta	19	0	35 – 40	14000 - 40000	0,3-0,4	
Compacta	20	0	40 – 45	40000 - 70000		
Muito compacta	> 20	0	> 45	> 70000		
Argilas e solos argilosos						
Consistência	Peso específico - γ (kN/m³)	Coesão - c (kPa)	Ângulo de atrito - φ (°)	Módulo de elasticidade – E (kPa)	Coeficiente de Poisson - v	
Muito mole	13	0 – 12	0	300 – 1200		
Mole	15	12 – 25	0	1200 – 2800		
Média	17	25 – 50	0	2800 - 5000	04 - 05	
Rija	19	50 – 150	0	5000 – 15000	0,4 0,0	
Dura	21	> 150	0	> 15000		

 Tabela 4: Avaliação dos Parâmetros de Resistência e de deformabilidade em Função do SPT - correlações

 empíricas - uso limitado a estudos preliminares (adaptado Marangon, 2018)

Em síntese, na Tabela 5 apresentam-se os parâmetros do solo utilizados nas análises.

Análise	Horizonte	Tipo de solo	NSPT	Ângulo de atrito (Teixeira, 1996)	Coesão (kPa)	Peso específico (kN/m³)
rte	1	Argila arenosa, Vermelha (Aterro)	Amostra Ind.	29,0°	21	12
CO	2	Argila siltosa, Variegada	2	21,0°	5	12
rte 3	1	Argila arenosa, Vermelha (Aterro)	Amostra Ind.	29,0°	21	12
U O O	2	Argila siltosa, Variegada	2	21,0°	5	12

Tabela 5: Parâmetros de solo utilizados.

2.3 Definição do Fator de Segurança

Em termos de estabilidade, enfatiza-se que a NBR 11682/2009 adota os fatores de segurança da Tabela 6 como necessários e suficientes em termos de estabilidade de um maciço de terra que teve seus parâmetros adequadamente determinados nos ensaios de campo e laboratório.

Níveis de segurança	Nível de segurança contra danos a vidas humanas		
ambientais	Alto	Médio	Baixo
Alto	1,5	1,5	1,4
Médio	1,5	1,4	1,3
Baixo	1,4	1,3	1,2

Tabela 6: Fatores de segurança mínimos baseados na NBR 11682/2009.

Para a determinação do nível de segurança contra danos materiais e ambientais e contra danos a vidas humanas, utilizam-se as Tabelas 7 e 8, extraídas da mesma norma.

Tabela 7: Nível de segurança desejado	contra a perda de vidas humanas.
---------------------------------------	----------------------------------

Nível de	Critérios
segurança	
Alto	Áreas com intensa movimentação e permanência de pessoas, como edificações públicas, residenciais ou industriais, estádios, praças e demais locais, urbanos ou não, com possibilidade de elevada concentração de pessoas. Ferrovias e rodovias de tráfego intenso.
Médio	Áreas e edificações com movimentação e permanência restrita de pessoas Ferrovias e rodovias de tráfego moderado
Baixo	Áreas e edificações com movimentação e permanência eventual de pessoas

Ferrovias e rodovias de tráfego reduzido.

Tabela 8: Nivel de segurança desejado contra danos materiais e ambientais.

Nível de	Critérios
segurança	
Alto	Danos materiais: Locais próximos a propriedades de alto valor histórico, social ou patrimonial, obras de grande porte e áreas que afetem serviços essenciais
	Danos ambientais: Locais sujeitos a acidentes ambientais graves, tais como nas proximidades de oleodutos, barragens de rejeito e fábricas de produtos tóxicos
Médio	Danos materiais: Locais próximos a propriedades de valor moderado Danos materiais: Locais sujeitos a acidentes ambientais moderados
Baixo	Danos materiais: Locais próximos a propriedades de valor reduzido Danos ambientais: Locais sujeitos a acidentes ambientais reduzidos

Para o estudo em questão, tanto o nível de segurança contra danos materiais e ambientais quanto o nível de segurança para danos a vidas humanas para a obra em análise foram considerados altos. Portanto, o fator de segurança mínimo contra deslizamentos considerado foi de 1,5.

2.4 Embasamento Teórico

O método mais abrangente para determinação do equilíbrio limite foi desenvolvido por Morgenstein e Price em 1965, posteriormente aprimorado por Morgenstern. Possibilita a avaliação dee superfícies não circulares, caso em questão, e é considerado pela literatura um método rigoroso.

Seja o esquema abaixo para uma fatia infinitesimal considerada:

De maneira a tornar o equilíbrio estaticamente determinado, é preciso que a relação entre E e T seja dada por uma função:

$$F(x) = T / (I \times E)$$

Onde l é um parâmetro determinado a partir da solução. F(x) é uma função acrescida à solução de estabilidade para contemplar rupturas não circulares e/ou na presença de estratificações. Quando F(x) = 0, a solução é idêntica a de Bishop. Quando f(x) = K (constante) a solução é idêntica ao método de Spencer.

Retornando à fatia infinitesimal, o equilíbrio de momentos com relação a base (quando dx tende a zero) é dado por:

$$-T = \frac{d\{E(y-y_t)\}}{dx} - E\frac{dy}{dx} + \frac{d\{P_w(y-h)\}}{dx} - P_w\frac{dy}{dx}$$

Onde são definidas as funções:

- Y(x) representando a superfície de ruptura;
- Z(x) a superfície do talude;
- H(x) a linha de poropressão e;
- Yt(x) a linha de ação da tensão efetiva normal.

Em se tratando de materiais que respondem à lei de Morh-Coulomb, o equilíbrio pode ser desdobrado na equação abaixo:

$$\frac{dE}{dx}\left\{1 - \frac{\tan\phi'}{FS}\frac{dy}{dx}\right\} + \frac{dT}{dx}\left\{\frac{\tan\phi'}{FS} + \frac{dy}{dx}\right\} = \frac{c'}{FS}\left\{1 + \left(\frac{dy}{dx}\right)^2\right\} + \frac{dP_w}{dx}\left\{\frac{\tan\phi'}{FS} \cdot \frac{dy}{dx} - 1\right\} + \frac{dW}{dx}\left\{\frac{\tan\phi'}{FS} + \frac{dy}{dx}\right\} - P_u\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}\frac{\tan\phi'}{FS}$$

$$\Rightarrow \frac{dE}{dx} \left\{ 1 - \frac{\tan \phi'}{FS} \frac{dy}{dx} \right\} + \lambda f \left\{ \frac{\tan \phi'}{FS} + \frac{dy}{dx} \right\} + \lambda \frac{df}{dx} \left\{ \frac{\tan \phi'}{FS} + \frac{dy}{dx} \right\} E = \frac{c'}{FS} \left\{ 1 + \left(\frac{dy}{dx}\right)^2 \right\} + \frac{dP_w}{dx} \left\{ \frac{\tan \phi'}{FS} \cdot \frac{dy}{dx} - 1 \right\} + \frac{dW}{dx} \left\{ \frac{\tan \phi'}{FS} + \frac{dy}{dx} \right\} - P_u \left\{ 1 + \left(\frac{dy}{dx}\right)^2 \right\} \frac{\tan \phi'}{FS} + \frac{dW}{FS} \left\{ \frac{\tan \phi'}{FS} + \frac{dy}{dx} \right\} - \frac{2}{FS} \left\{ 1 + \left(\frac{dy}{dx}\right)^2 \right\} \frac{\tan \phi'}{FS} + \frac{dW}{dx} \left\{ \frac{\tan \phi'}{FS} + \frac{dW}{dx} \right\} + \frac{2}{FS} \left\{ \frac{1}{FS} + \frac{dW}{dx} \right\} + \frac{2}{FS} \left\{ \frac{1}{FS} + \frac{dW}{dx} \right\} = \frac{1}{FS} \left\{ \frac{1}{FS} + \frac{dW}{dx} \right\} + \frac{1}{FS} \left\{ \frac{1}{FS} + \frac{dW}{dx} \right\} + \frac{1}{FS} \left\{ \frac{1}{FS} + \frac{1}{FS} + \frac{1}{FS} \right\} \right\} + \frac{1}{FS} \left\{ \frac{1}{FS} + \frac{1}{FS} + \frac{1}{FS} \left\{ \frac{1}{FS} + \frac{1}{FS} + \frac{1}{FS} + \frac{1}{FS} \left\{ \frac{1}{FS} + \frac{1}{FS} + \frac{1}{FS} + \frac{1}{FS} \left\{ \frac{1}{FS} + \frac{1}{FS} + \frac{1}{FS} + \frac{1}{FS} \right\} \right\}$$

Considerando a subdivisão em fatias infinitesimais onde as coordenadas de limite sejam X0, X1, X2 ... Xn, onde a coordenada X se localiza no início de cada fatia, o interior de cada infinitesimal assume as expressões:

- dW/dx = px + q;
- f = kx + m;
- Pu = rx + s;
- Pw = uw + nwx = Ww x2

Donde se obtém a equação simplificada:

$$E(x) = \frac{1}{L + Kx} \left[E_i L + \frac{Nx^2}{2} + Px \right] \longrightarrow E_{i+1} = \frac{1}{L + Kb} \left[E_i L + \frac{Nb^2}{2} + Pb \right]$$

Onde b é a largura da fatia correspondente á diferença entre a posição x e a imediatamente anterior. Usando a relação E e T, bem como a equação de equilíbrio de momentos, obtém-se a equação:

$$M(x) = E(y_t - y) = M_{eW}(x) + \int_{x_0}^x \left(\lambda f - \frac{dy}{dx}\right) E dx$$

onde

$$M_{eW}(x) = \int_{x_0}^x \left(-P_w \frac{dy}{dx}\right) dx + \left[P_w(y-h)\right]$$

O método é solucionado iterativamente assumindo valores para o fator de segurança e l, calculando E e M(x) para cada uma das fatias. O equilíbrio se dá através da anulação dos valores de E e M para x=0 e x=n fatias. O processo iterativo se faz necessário utilizando métodos numéricos qua avaliam a convergência das equações. A utilização de um computador é condição sine qua non dada à complexidade e número de iterações, de forma a ser viável.

3 RESULTADOS

O funcionamento do método tratado anteriormente é baseado no cálculo dos esforços internos do talude por meio da divisão do maciço em lamelas, de forma que os cálculos são realizados de maneira iterativa em cada uma destas lamelas. Desta forma, foi utilizado o *software* GEOSTUDIO[®] para auxílio nos cálculos, permitindo um estudo mais detalhado e eficiente da estabilidade dos taludes.

Figura 6: Exemplo de divisão de lamelas do talude.

Vale ressaltar que a norma NBR 11682/2009 estabelece que as análises devem ser realizadas considerando uma sobrecarga mínima de 20 kN/m² nas cristas dos taludes. Desta forma, foi adotada uma sobrecarga de 20 kN/m² no topo do talude.

A seguir apresentaremos os resultados obtidos para as situações em que as bacias encontramse secas, cheias e seca com solo saturado (simulando uma situação em que houve o esvaziamento da bacia e o solo permaneceu saturado).

3.1 Resultados das Lagoas Secas

A seguir serão apresentados os resultados dos mínimos fatores de segurança obtidos nas análises levando em consideração o período de estiagem, bem como a superfície de pesquisa referente a este fator de segurança.

Figura 7: Resultado da análise no corte A - Seca.

Figura 8: Resultado da análise no corte B - Seca.

18

3.2 Resultados das Lagoas Cheias

A seguir serão apresentados os resultados dos mínimos fatores de segurança obtidos nas análises levando em consideração o nível máximo das bacias, bem como a superfície de pesquisa referente a este fator de segurança.

Figura 9: Resultado da análise no corte A - Cheia.

Figura 10: Resultado da análise no corte B - Cheia.

3.3 Resumo das Análises

Na tabela 9 a seguir, podemos observar o resumo dos fatores de segurança obtidos em cada análise.

	Fator de Se	egurança
Análise	Lagoas Secas	Lagoas Cheias
Corte A	1,581	0,738
Corte B	3,376	0,997

Tabela 9: Resumo dos fatores de segurança obtidos nas análises

Com isso, podemos observar que os valores de FS para o corte B (talude em corte) não possui valores superiores a 1,5, assim estes taludes não são considerados estáveis apenas com a realização de terraplenagem.

Com base nestes resultados, a empresa Eterc contratou a empresa Maccaferri para realização de estudos de contenção com gabião. Podemos observar os resultados dos estudos abaixo.

Assim, para os taludes em aterro, a seção utilizada continuou sendo realizada com terraplenagem sem necessidade de uso de contenção, no entanto, para as seção em corte, será utilizada contenção em gabião, conforme estudo em anexo realizado pela Maccaferri.

4 CONSIDERAÇÕES FINAIS

Diante do exposto, observamos que nas análises efetuadas de regiões em aterro os Fatores de Segurança encontrados têm valores superiores aos estabelecidos em norma, FS = 1,5 para as as situações consideradas. Desta forma, consideramos que os taludes de aterro externos na proporção de 2:1 e de taludes internos da bacia na proporção de 1:1 satisfazem aos critérios estalecidos nesta análise.

No entanto, vale ressaltar para alguns fatores que devem ser observados durante a construção e manutenção das bacias. Em todas as análises, considerou-se que durante o período de estiagem o nível do lençol freático está baixo o suficiente para não aflorar nas bacias. Além disso, é fundamental o plantio de gramíneas nos taludes para proteção das encostas. O estado destas gramíneas também deve ser verificado durante o período de vistorias e manutenção das bacias.

Outro fator de grande importância é o isolamento da área da bacia, a fim de se evitar a passagem de veículos de carga e movimentação de terra em áreas adjacentes à bacia de drenagem.

5 REFERÊNCIAS

PDDU/DF, Plano Diretor de Drenagem Urbana do Distrito Federal. Distrito Federal, Secretaria de Estado de Obras – 2009.

Normas da Associação Brasileira de Normas Técnicas-ABNT.

Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions – ASTM D3080.

Termo de Referência da NOVACAP para Elaboração de Projetos de Drenagem Pluvial, 2012.

Anexos – Memória de Cálculo das Contenções em Gabião

MacStARS W – Rel. 4.0

Maccaferri Stability Analysis of Reinforced Slopes and Walls Maccaferri do Brasil Telefone 4525-5000

Projeto	
Seção Transversal	
Local :	
Pasta :	
Data : 22/09/	2022

RESUMO

PERFIL DA CAMADA	2
PERFIL DA SUPERFÍCIE FREÁTICA	
BLOCOS REFORÇADOS	
Bloco: GAB 0.1	
Bloco: GAB 1	
Bloco: GAB 0.2	4
Bloco: GAB 2	4
Bloco: GAB 0.3	5
Bloco: GAB 3	5
Bloco: GAB 0.4	5
Bloco: GAB 0.5	6
Bloco: GAB 0.6	6
SOBRECARGAS	6
PROPRIEDADES DOS REFORÇOS UTILIZADOS	7
VERIFICAÇÃO DOS RESULTADOS	9
Verificação da estabilidade Global:	9
Verificação como muro a gravidade:	10

PROPRIEDADES DO SOLO

Solo: ATERRO Descrição:

Coesão	[kN/m²] :	10.00
Ângulo de Atrito:	[°] :	28.00
Valor de Ru		0.00
Peso unitário – Natural	[kN/m³] :	18.00
Peso unitário – Saturado	[kN/m³] :	18.00
Solo: GABIÃO Descrição:		
Coesão	[kN/m²] :	90.00
Ângulo de Atrito:	[°] :	40.00
Valor de Ru	:	0.00
Peso unitário – Natural	[kN/m³] :	17.00
Peso unitário – Saturado	[kN/m³] :	17.00
Solo: RACHÃO Descrição:		
Coesão	[kN/m²] :	0.00
Ângulo de Atrito:	[°] :	45.00
Valor de Ru	:	0.00
Peso unitário – Natural	[kN/m³] :	17.00
Peso unitário – Saturado	[kN/m³] :	17.00
Solo: SOLO 01 Descrição:		
Coesão	[kN/m²] :	20.00
Ângulo de Atrito:	[°] :	29.00
Valor de Ru	:	0.00
Peso unitário – Natural	[kN/m³] :	12.00
Peso unitário – Saturado	[kN/m³] :	16.00
Solo: SOLO 02Descrição:		
Coesão	[kN/m²] :	25.00
Ângulo de Atrito:	[°] :	20.00
Valor de Ru		0.00
Peso unitário – Natural	[kN/m³] :	19.00
Peso unitário – Saturado	[kN/m³] :	19.00

PERFIL DA CAMADA

Camada: ATER Solo: ATERRO	RRO 01	Descrição):				
Х	Y	Х	Y	Х	Y	Х	Y
[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
4.78	8.53	6.38	10.00	8.88	9.97		
Camada: ATER	RRO 02	Descrição):				
	v	v	v	v	v	Y	v
۲ [m]	י [m]	[m]	י [m]	[m]	י [m]	۲ سا	י [m]
50.10	12.46	51.96	14.31	54.88	14.59	[,,,]	[111]
Camada: RACI	HÃO	Descrição):				
Solo: RACHÃO		-					
Х	Y	Х	Y	Х	Y	Х	Y
[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
8.38	6.97	13.38	6.97	13.43	6.47	43.56	6.47
43.60	6.97	50.60	6.97				

MACCAFERRI

Camada: SELO Solo: ATERRO	DE ARGILA	Descrição	:				
Х	Y	Х	Y	Х	Y	Х	Y
[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
13.38	6.97	43.60	6.97	[]	[]	[]	[]
Camada: SOLC	Camada: SOLO 01 Descrição:						
Solo: SOLO 01		-					
Х	Y	Х	Y	Х	Y	Х	Y
[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
0.00	8.04	7.70	8.83	8.38	6.97	8.75	5.97
43.92	5.97	50.24	5.97	50.60	6.97	51.29	8.84
51.79	8.84	52.47	10.72	52.97	10.72	53.66	12.60
54.16	12.60	54.88	14.59	66.89	15.72		
Camada: SOLC	Descrição	:					
Solo: SOLO 02							
Х	Y	Х	Y	Х	Y	Х	Y
[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
0.00	0.00	66.89	7.68				

PERFIL DA SUPERFÍCIE FREÁTICA

Su	perície freá	tica: áGUA	Descrição:					
	X	Y	Y	Р	Х	Y	Y	Р
	[m]	[m]	[m]	[kN/m²]	[m]	[m]	[m]	[kN/m²]
	0.00	8.04			4.78	8.53		
	5.60	9.28			8.88	9.28		
	9.15	6.97			49.83	6.97		
	50.10	9.28			54.88	14.59		
	66.89	15.72						

BLOCOS REFORÇADOS

Bloco: GAB 0.1

Dimensões do bloco	[m]	: Largura da Ba	ase =	5.00	Altura =	0.50
Origem do Bloco	[m]	: Abscissa	=	45.10	Ordenada =	6.97
Inclinação da Face	[°]	: 0.00				

Material de enchimento do Gabião	_: GABIÃO
Tipo de aterro estrutural	: Verificações para o Muro de gabiões
Aterro estrutural	: ATERRO
Solo de aterro	: ATERRO
Solo do talude acima da estrutura	: ATERRO
Solo da Fundação	: RACHÃO

Parâmetros para o cálculo da capacidade de suporte por Brir	nch Hansen,	Vesic ou Meyerhof
Profundidade da fundação	[m] :	0.00
Inclinação do talude ao pé da estrutura	[°] :	0.00

Padrão dos reforços:

Maccaferri - Gabiões	H=0.50 -	Width P - 5.00)				
Comprimento	[m]	= 5.00					
Gabião	[m]	: Altura	=	0.50	Largura	_	5.00

Bloco: GAB 1

Material de enchimento do Gabião. GABIÃO Tipo de aterro estrutural. ATERRO Solo do talude acima da estrutura. ATERRO Solo do talude acima da estrutura. ATERRO Solo da Fundação. RACHÃO Parâmetros para o cálculo da capacidade de suporte por Brinch Hansen, Vesic ou Meyerhof Profundidade da fundação. [m] : 0.00 Inclinação do talude ao pé da estrutura. [r] : 0.00 Padrão dos reforços: Macaferri - Gabiões H=1.00 - Width P - 3.00 Comprimento. [m] = 3.00 Gabião. [m] = 3.00 Gabião. [m] = 3.00 Gabião. [m] = 0.00 por GAB 0.1 Inclinação da Face [°] 0.00 Material de enchimento do Gabião. GABIÃO Tipo de aterro estrutural. ATERRO Solo da Euro CabiãO Tipo de aterro estrutural. ATERRO Solo da Fundação. [C]] : 0.00 Material de enchimento do Gabião. GABIÃO Tipo de aterro estrutural. ATERRO Solo da talude acima da estrutura. ATERRO Solo da talude acima da estrutura. [C]] : 0.00 Parâmetros pa	Dimensões do blo Origem do Bloco. Inclinação da Fac	co[m]: L [m]: A e[°]:	argura da Base Abscissa 0.00	=	3.00 11.88	Altura= Ordenada=	1.00 6.97
Parâmetros para o cálculo da capacidade de suporte por Brinch Hansen, Vesic ou Meyerhof Profundidade da fundação	Mate Tipo Ateri Solo Solo Solo	rial de enchimento de aterro estrutura o estrutural de aterro do talude acima da da Fundação	o do Gabião al a estrutura		GABIÃO Verificaçõe ATERRO ATERRO ATERRO RACHÃO	s para o Muro de g	gabiões
Padrão dos reforços: Maccaferri - Gabiões H=1.00 - Width P - 3.00 Comprimento [m] = 3.00 Gabião [m] : Altura = 1.00 Largura = 3.00 Bloco: GAB 0.2 Dimensões do bloco [m] : Largura da Base = 5.00 Altura = 1.00 Berma [m] = 0.00 por GAB 0.1 Inclinação da Face [°] : 0.00 Material de enchimento do Gabião : GABIÃO : Verificações para o Muro de gabiõe Aterro estrutural : Verificações para o Muro de gabiõe Aterro estrutural : ATERRO Solo do talude acima da estrutura : ATERRO Solo do talude acima da estrutura : ATERRO Solo do talude acima da estrutura : GABIÃO Parâmetros para o cálculo da capacidade de suporte por Brinch Hansen, Vesic ou Meyerhof Profundidade da fundação [°] : 0.00 Inclinação do talude ao pé da estrutura [°] : 0.00 Maccaferri - Gabiões H=1.00 - Width P - 5.00 Comprimento [°] : 0.00 Comprimento [m] : Altura = 1.00 Largura = 5.00 Gabião [m] : Altura = 1.00 </td <td>Parâmetros para Profundidade da f Inclinação do talu</td> <td>o cálculo da capaci [;]undação de ao pé da estrut</td> <td>dade de suporte ura</td> <td>por Brincl</td> <td>h Hansen, ' [m] : [°] :</td> <td>Vesic ou Meyerhof 0.00 0.00</td> <td></td>	Parâmetros para Profundidade da f Inclinação do talu	o cálculo da capaci [;] undação de ao pé da estrut	dade de suporte ura	por Brincl	h Hansen, ' [m] : [°] :	Vesic ou Meyerhof 0.00 0.00	
Bloco: GAB 0.2 Dimensões do bloco[m]: Largura da Base= 5.00 Altura= 1.00 Berma	Padrão dos refo Maccaferri - Gabiá Comprimento Gabião	/ rços: ŏes H=1.00 - Widt [m]= [m] : /	:h P - 3.00 3.00 Altura	=	1.00	Largura =	3.00
Dimensões do bloco[m]: Largura da Base= 5.00 Altura= 1.00 Berma[m]= 0.00 por GAB 0.1 Inclinação da Face[°]: 0.00 Material de enchimento do Gabião: GABIÃO Tipo de aterro estrutural: Verificações para o Muro de gabiõe Aterro estrutural: ATERRO Solo de aterro: ATERRO Solo da talude acima da estrutura: ATERRO Solo da Fundação: GABIÃO Parâmetros para o cálculo da capacidade de suporte por Brinch Hansen, Vesic ou Meyerhof Profundidade da fundação	Bloco: GAB 0 2						
Material de enchimento do Gabião : GABIÃO Tipo de aterro estrutural : Verificações para o Muro de gabiõe Aterro estrutural : ATERRO Solo de aterro : ATERRO Solo do talude acima da estrutura : ATERRO Solo da Fundação : GABIÃO Parâmetros para o cálculo da capacidade de suporte por Brinch Hansen, Vesic ou Meyerhof Profundidade da fundação [m] : 0.00 Inclinação do talude ao pé da estrutura [°] : 0.00 Padrão dos reforços: [°] : 0.00 Maccaferri - Gabiões H=1.00 - Width P - 5.00 [°] : 0.00 Comprimento [m] = 5.00 Gabião [m] = 5.00 Boco: GAB 2 [m] = 1.00 por GAB 1 Dimensões do bloco [m] = 1.00 por GAB 1 Inclinação da Face [°] : 0.00 Material de enchimento do Gabião : GABIÃO Tipo de aterro estrutural : Verificações para o Muro de gabiõe Aterro estrutural : ATERRO Solo de aterro : ATERRO	Dimensões do blo Berma Inclinação da Fac	/co[m]: L [m]= e[°]:	argura da Base <u>.</u> 0.00 por GAI 0.00	= 3 0.1	5.00	Altura=	1.00
Parâmetros para o cálculo da capacidade de suporte por Brinch Hansen, Vesic ou Meyerhof Profundidade da fundação	Mate Tipo Aterr Solo Solo Solo	rial de enchimento de aterro estrutura o estrutural de aterro do talude acima da da Fundação	o do Gabião al a estrutura		GABIÃO Verificaçõe ATERRO ATERRO ATERRO GABIÃO	es para o Muro de g	gabiões
Padrão dos reforços: Maccaferri - Gabiões H=1.00 - Width P - 5.00 Comprimento	Parâmetros para Profundidade da 1 Inclinação do talu	o cálculo da capaci undação de ao pé da estrut	dade de suporte ura	por Brinc	h Hansen, ' [m] : [°] :	Vesic ou Meyerhof 0.00 0.00	
Gabião	Padrão dos refo Maccaferri - Gabio Comprimento	b rços: ŏes H=1.00 - Widt <u>[m]</u> =	th P - 5.00 5.00				
Bloco: GAB 2 Dimensões do bloco [m] : Largura da Base = 2.00 Altura = 1.00 Berma [m] = 1.00 por GAB 1 Inclinação da Face [°] : 0.00 Material de enchimento do Gabião : GABIÃO : GABIÃO Tipo de aterro estrutural : : Verificações para o Muro de gabiõe Aterro estrutural : : ATERRO Solo de aterro : : ATERRO	Gabião	[m]: <i>F</i>	Altura	=	1.00	Largura=	5.00
Material de enchimento do Gabião: GABIÃO Tipo de aterro estrutural: Verificações para o Muro de gabiõe Aterro estrutural: ATERRO Solo de aterro: ATERRO	Bloco: GAB 2 Dimensões do blo Berma Inclinação da Fac	e[°]: L [m]= e[°]:	argura da Base <u>.</u> 1.00 por GAI 0.00	= 3 1	2.00	Altura=	1.00
Solo do talude acima da estrutura:: ATERRO Solo da Fundação:: GABIÃO	Mate Tipo Aterr Solo Solo Solo	rial de enchimento de aterro estrutura o estrutural de aterro do talude acima da da Fundação	o do Gabião al a estrutura		GABIÃO Verificaçõe ATERRO ATERRO ATERRO GABIÃO	s para o Muro de g	gabiões
Parâmetros para o cálculo da capacidade de suporte por Brinch Hansen, Vesic ou Meyerhof Profundidade da fundação	Parâmetros para Profundidade da f Inclinação do talu	o cálculo da capaci undação de ao pé da estrut	dade de suporte ura	por Brincl	h Hansen, ' [m] : [°] :	Vesic ou Meyerhof 0.00 0.00	

Padrão dos reforços: Maccaferri - Gabiões H=1.00 - Width P - 2.00

MACCAFERRI

Comprimento[m]= Gabião[m]: /	2.00 Altura=	1.00	Largura=	2.00
Bloco: GAB 0.3 Dimensões do bloco[m]: I Berma[m]= Inclinação da Face[°]:	Largura da Base= 1.00 por GAB 0.2 0.00	4.00	Altura=	1.00
Material de enchimento Tipo de aterro estrutur Aterro estrutural Solo de aterro Solo do talude acima d Solo da Fundação) do Gabião al a estrutura	: GABIÃO : Verificaçõe : ATERRO : ATERRO : ATERRO : ATERRO : GABIÃO	es para o Muro de	gabiões
Parâmetros para o cálculo da capac Profundidade da fundação Inclinação do talude ao pé da estrut	idade de suporte por tura	Brinch Hansen, [m] : [°] :	Vesic ou Meyerho 0.00 0.00	f
Padrão dos reforços: Maccaferri - Gabiões H=1.00 - Wid Comprimento[m]=	th P - 4.00 4.00	1.00		4.00
	Altura=	1.00	Largura=	4.00
Bloco: GAB 3 Dimensões do bloco[m]: I Berma[m]= Inclinação da Face[°]:	Largura da Base= 1.00 por GAB 2 0.00	1.00	Altura=	1.00
Material de enchimento Tipo de aterro estrutur Aterro estrutural Solo de aterro Solo do talude acima d Solo da Fundação) do Gabião al a estrutura	: GABIÃO : Verificaçõe : ATERRO : ATERRO : ATERRO : ATERRO : GABIÃO	es para o Muro de	gabiões
Parâmetros para o cálculo da capac Profundidade da fundação Inclinação do talude ao pé da estrut	idade de suporte por tura	Brinch Hansen, [m] : [°] :	Vesic ou Meyerho 0.00 0.00	f
Padrão dos reforços: Maccaferri - Gabiões H=1.00 - Wid Comprimento[m]= Gabião[m]: /	th P - 1.00 1.00 Altura=	1.00	Largura=	1.00
Bloco: GAB 0.4 Dimensões do bloco[m]: Berma[m]= Inclinação da Face[°]:	Largura da Base= 1.00 por GAB 0.3 0.00	3.00	Altura=	1.00
Material de enchimento Tipo de aterro estrutur Aterro estrutural Solo de aterro Solo do talude acima d Solo da Fundação) do Gabião al a estrutura	: GABIÃO : Verificaçõe : ATERRO : ATERRO : ATERRO : ATERRO : GABIÃO	es para o Muro de	gabiões

Parâmetros para o cálculo da capacidade de suporte por Brinch Hansen, Vesic ou Meyerhof Profundidade da fundação______[m] : 0.00

MACCAFERRI

Inclinação do talude ao pé da estrutura	[°] :	0.00	
Padrão dos reforços:Maccaferri - Gabiões H=1.00 - Width P - 3.00Comprimento[m]= 3.00Gabião[m]: Altura=	1.00	Largura=	3.00
Bloco: GAB 0.5 Dimensões do bloco[m]: Largura da Base= Berma	2.00	Altura=	1.00
Material de enchimento do Gabião Tipo de aterro estrutural Aterro estrutural Solo de aterro Solo do talude acima da estrutura Solo da Fundação	: GABIÃO : Verificaçõo : ATERRO : ATERRO : ATERRO : GABIÃO	es para o Muro de g	Jabiões
Parâmetros para o cálculo da capacidade de suporte por Brin Profundidade da fundação Inclinação do talude ao pé da estrutura	ch Hansen, [m] : [°] :	Vesic ou Meyerhof 0.00 0.00	
Padrão dos reforços: Maccaferri - Gabiões H=1.00 - Width P - 2.00 Comprimento[m]= 2.00 Gabião= Altura=	1.00	Largura=	2.00
Bloco: GAB 0.6 Dimensões do bloco[m]: Largura da Base= Berma	1.00	Altura=	1.00
Material de enchimento do Gabião Tipo de aterro estrutural Aterro estrutural Solo de aterro Solo do talude acima da estrutura Solo da Fundação	: GABIÃO : Verificaçõo : ATERRO : ATERRO : ATERRO : GABIÃO	es para o Muro de g	abiões
Parâmetros para o cálculo da capacidade de suporte por Brin Profundidade da fundação Inclinação do talude ao pé da estrutura	ch Hansen, [m] : [°] :	Vesic ou Meyerhof 0.00 0.00	
Padrão dos reforços: Maccaferri - Gabiões H=1.00 - Width P - 1.00 Comprimento[m]= 1.00 Gabião[m]: Altura=	1.00	Largura=	1.00

SOBRECARGAS

Cargas Distribuío	das: 20KN	N/M	Descriçã	ăo:				
Intensidade	[kN/m ²]	= 20	.00	Inclinaç	ão	[°]	_=	0.00
Abscissa	[m]	: de =	52.00	até =	66.00			

PROPRIEDADES DOS REFORÇOS UTILIZADOS

Maccaferri - Gabiões H=0.50 - Width P - 5.00		
Resistência à Tração	[kN/m] :	50.00
Comprimento de ancoragem Mínimo	[m] :	0.15
Fator de seg. contra a ruptura (pedregulho)	:	1.43
Fator de seg. contra o arrancamento (Pull-out)	:	1.00
Fator de seg. contra a ruptura (areia)	:	1.24
Fator de seg. contra o arrancamento (Pull-out)	:	1.00
Fator de seg. contra a ruptura (areia siltosa)	:	1.15
Fator de seg. contra o arrancamento (Pull-out)	:	1.00
Fator de seg. contra a ruptura (argila arenosa)	:	1.24
Fator de seg. contra o arrancamento (Pull-out)	:	1.00
Fator de interação reforço/reforço	:	0.30
Coeficiente de interação reforco-brita	:	0.90
Coeficiente de interação reforco-areia	:	0.65
Coeficiente de interação reforco-silte	:	0.50
Coeficiente de interação reforco-argila	:	0.30
Maccaferri - Gabiões H=1.00 - Width P - 1.00		
Resistência à Tração	[kN/m] :	50.00
Comprimento de ancoragem Mínimo	[m] :	0.15
Fator de seg, contra a ruptura (pedregulho)	<u>L</u> <u>L</u>	1.43
Fator de seg. contra o arrancamento (Pull-out)		1.00
Fator de seg. contra a ruptura (areia)		1 24
Fator de seg. contra o arrancamento (Pull-out)	······	1 00
Fator de seg. contra a runtura (areia siltosa)	······	1 15
Fator de seg. contra o arrancamento (Pull-out)	······	1 00
Fator de seg. contra a runtura (argila arenosa)	······	1 24
Fator de seg. contra o arrancamento (Pull-out)	······	1 00
Fator de interação reforco/reforco	······	0.30
Coeficiente de interação reforço-brita	······	0.90
Coeficiente de interação reforço areja	······	0.50
Coeficiente de interação reforço silte	······	0.05
Coeficiente de interação reforço argila	·······	0.30
Maccaferri - Gabiões H=1 00 - Width P - 2 00	······································	0.50
Resistência à Tração	[kN/m] ·	50.00
Comprimento de ancoragem Mínimo	[m] ·	0 15
Eator de seg, contra a runtura (nedregulho)	<u>L</u>	1 43
Fator de seg. contra o arrancamento (Pull-out)	·······	1 00
Fator de seg. contra a runtura (areia)	······	1.00
Fator de seg. contra o arrancamento (Pull-out)	······	1 00
Fator de seg. contra a runtura (areia siltosa)	······	1 15
Fator de seg. contra o arrancamento (Pull-out)	······	1.15
Fator de seg. contra o arrancamento (Fuil-out)		1.00
Fator de seg. contra a arrancamento (Pull-out)		1.27
Fator de interação referendreferen	······	0.30
Cooficiento de interação refereo brita		0.50
Coeficiente de interação reforço areja		0.90
Cooficiente de interação refereo cilto	······	0.03
Cooficiente de interação refereo areila		0.50
Maccaforri Cabiãos H-1.00 Width D.2.00	······	0.30
maccale III - Gabildes $\Pi = 1.00$ - Widti P - 3.00	[kN/m]	E0 00
Comprimente de ancoração Mínima	NV/III]:	0.00
		0.12

MACCAFERRI

Fator de seg. contra a ruptura (pedregulho)	: 1.43
Fator de seg. contra o arrancamento (Pull-out)	: 1.00
Fator de seg. contra a ruptura (areia)	: 1.24
Fator de seg. contra o arrancamento (Pull-out)	: 1.00
Fator de seg. contra a ruptura (areia siltosa)	: 1.15
Fator de seg. contra o arrancamento (Pull-out)	: 1.00
Fator de seg. contra a ruptura (argila arenosa)	: 1.24
Fator de seg. contra o arrancamento (Pull-out)	: 1.00
Fator de interação reforço/reforço	: 0.30
Coeficiente de interação reforço-brita	: 0.90
Coeficiente de interação reforço-areia	: 0.65
Coeficiente de interação reforço-silte	: 0.50
Coeficiente de interação reforço-argila	: 0.30
Maccaferri - Gabiões H=1.00 - Width P - 4.00	
Resistência à Tração[kN/m]	: 50.00
Comprimento de ancoragem Mínimo[m]	: 0.15
Fator de seg. contra a ruptura (pedregulho)	: 1.43
Fator de seg. contra o arrancamento (Pull-out)	: 1.00
Fator de seg. contra a ruptura (areia)	: 1.24
Fator de seg. contra o arrancamento (Pull-out)	: 1.00
Fator de seg. contra a ruptura (areia siltosa)	: 1.15
Fator de seg. contra o arrancamento (Pull-out)	: 1.00
Fator de seg. contra a ruptura (argila arenosa)	: 1.24
Fator de seg. contra o arrancamento (Pull-out)	: 1.00
Fator de Interação reforço/reforço	: 0.30
Coeficiente de interação reforço-brita	: 0.90
Coeficiente de interação reforço-arela	: 0.65
	: 0.50
Coefficiente de Interação reforço-argila	: 0.30
Maccalelli - Gabloes n=1.00 - Widtli P - 5.00	
Comprimento de ancoragom Mínimo	. 0.15
Ester de seg, centra a runtura (nedregulho)	· 1/2
Fator de seg. contra e arrancamente (Pull-out)	· 1.45
Estor do sog, contra a runtura (aroia)	· 1.00
Fator de seg. contra o arrancamento (Dull-out)	· 1.24
Fator de seg. contra a runtura (areia siltosa)	· 115
Fator de seg. contra o arrancamento (Pull-out)	· 1.15
Fator de seg. contra o unancamento (i un out)	· 1.00
Fator de seg. contra o arrancamento (Pull-out)	· 1.24
Fator de interação reforco/reforco	· 0.30
Coeficiente de interação reforço-brita	: 0.90
Coeficiente de interação reforço areia	: 0.65
Coeficiente de interação reforço-silte	: 0.50
Coeficiente de interação reforco-argila	: 0.30

VERIFICAÇÃO DOS RESULTADOS

Verificação da estabilidade Global:

Força atuante nos Reforços de acordo com o Método RígidoAnálise de estabilidade com superfícies circulares de acordo com o Método de BishopFator de Segurança Calculado1.533

	Limites de busca para a	s superfícies d	e rupti	ura	
Limite inicial, al	oscissas [m]	Li	mite fi	nal, abso	cissas [m]
Primeiro ponto	Segundo ponto	Primeiro p	onto		Segundo ponto
35.00	45.00	50.00			65.00
Número de pontos de i	início no primeiro segmento		:	21	
Número total de super	fícies verificadas			210	
Comprimento mínimo o	la base das lamelas	[m]		1.00	
Ângulo limite superior	para a busca	[°]		0.00	
Ângulo limite inferior p	ara a busca	[°]		0.00	
•					

Verificação como muro a gravidade: Risco Considerado: CAR 0 1

Bloco Considerado: GAB 0.1		
Força Estabilizante	[kN/m] :	294.19
Força Atuante	[kN/m] :	148.44
Fator de Segurança contra o Deslizamento	:	1.982
Momento Estabilizante	[kN*m/m] :	903.57
Momento Ativo	[kN*m/m] :	368.35
Fator de segurança contra o tombamento	:	2.453
Pressão Admissível calculada pelo método de equilíbrio	limite.	

Pressão Admissível [kN/m ²] :	150.00
Pressão média[kN/m ²] :	90.56
Fator de segurança – Capacidade de carga da fundação:	1.656
Fundação equivalente [m] :	3.64
Excentricidade da força normal [m] :	0.68
Braço de momento[m]:	2.48
Força normal[kN] :	294.19
Tensão normal na borda interna	106.90
Tensão normal na borda externa [kN/m ²] :	10.76

A Maccaferri não se responsabiliza pelos cálculos e desenhos aqui apresentados, visto que estes se constituem apenas em sugestões para a melhor utilização de seus produtos.