T15 – Complementação do Sistema Viário da ESPM com o TAS

Item 4 – Projeto de Pavimentação VERSÃO FINAL

CONTRATO Nº 013/2013
Processo nº: 110.000.397/2012
Secretaria de Estado de Obras do Distrito Federal - SO

CONSÓRCIO TRANSOESTE

ÍNDICE

1. DETERMINAÇÃO DAS CARGAS DO TRAFEGO	5
2. CAPACIDADE DE SUPORTE DO SUBLEITO	23
3. DIMENSIONAMENTO EM PAVIMENTO FLEXÍVEL	25
4. DIMENSIONAMENTO EM PAVIMENTO RÍGIDO	40
4.1. PARÂMETROS PARA O DIMENSIONAMENTO	40
4.2. ESPESSURA DA PLACA	44
4.3. ANÁLISE COMPARATIVA DE VIABILIDADE ECONÔMICA DA SO ADOTADA	_
4.4. BARRAS DE TRANSFERÊNCIAS NA JUNTAS TRANSVERSAIS	60
4.5. JUNTAS TRANSVERSAIS	61
5. ESPECIFICAÇÕES TÉCNICAS DE MATERIAIS E SERVIÇOS	
5.1. CONCRETO ASFÁLTICO	66
5.2. PLACAS DE CONCRETO DE CIMENTO PORTLAND	67
5.3. CAMADA DE CONCRETO ROLADO	68
5.4. BRITA GRADUADA	
5.5. SOLO CAL	
5.6. IMPRIMAÇÃO BETUMINOSA	
5.7. PINTURA DE LIGAÇÃO	
5.8. REGULARIZAÇÃO DO SUBLEITO	69
6. ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA - CREA/DF	70
7. PLANTAS	72

APRESENTAÇÃO

O Consórcio Transoeste submete à Secretaria de Obras do DF, para apreciação, o RELATÓRIO DE PROJETO DE PAVIMENTAÇÃO para elaboração do **PROJETO DE IMPLANTAÇÃO PARA A READEQUAÇÃO DO CORREDOR DE TRANSPORTE PÚBLICO DO EIXO OESTE DO DISTRITO FEDERAL, TRECHO: T15 - COMPLEMENTAÇÃO DO SISTEMA VIÁRIO DA ESPM COM O TAS**, relativo à **INTERSEÇÃO ESPM – W3 – TAS**, conforme contrato Nº 013/2013 - SO.

O presente relatório tem como finalidade apresentar as Plantas e Memórias de Cálculo do Projeto de Pavimentação, estas últimas correspondentes aos cálculos dos pavimentos em Concreto e CBUQ, respectivamente para as vias componentes da interseção em trevo formada pelas vias ESPM / W3 e Acesso ao Terminal Asa Sul - TAS, em um volume conforme especificado a seguir:

- Volume 1/1 – Relatório de Projeto

A rede viária projetada envolve somente as vias componentes da referida interseção, sendo complementar e interligada às vias já projetadas para a ESPM, que consta do projeto desenvolvido em abril de 2011 pela AeT Arquitetura Planejamento e Transportes, no escopo do contrato Nº 217/2009 - SO.

Trata-se, portanto, de um projeto complementar à rede viária já projetada na ESPM na qual foram acrescentados trecho de travessia da via de ligação entre a W3, o acesso ao TAS e as alças e ramos da interseção em trevo. Nesse contexto, os eixos estão numerados em següência ao projeto da ESPM.

Os estudos de tráfego de referência para esse projeto, assim como os estudos geotécnicos, são os mesmos elaborados em 2011 para o projeto da ESPM, posto que o projeto da ESPM já havia incorporado nos carregamentos de autos e ônibus a interseção da ESPM/W3/TAS.

O Sistema Viário da ESPM com TAS conta com 12 eixos viários, onde se ressaltam:

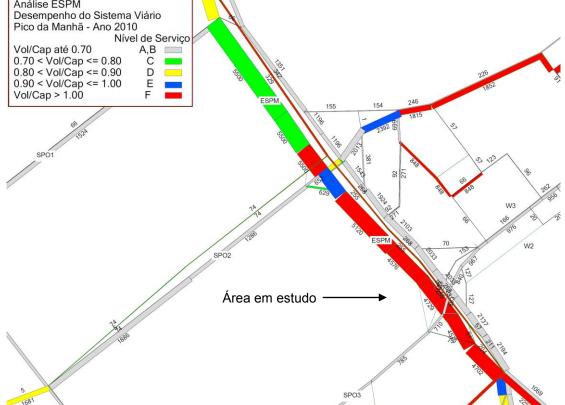
- Os Eixos 53, 54, 55, 56, 57, 59, 60, 61 e 64 que correspondem a via, em pavimento rígido, exclusiva de ônibus;
- Os Eixos 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 58, 62 e 63 que corresponde a via da ESPM, em pavimento flexível, no sentido à interseção com a via W3;

O projeto dessa interseção tem como finalidade implantar a interseção em trevo, com interligação às vias existentes da ESPM, e não às vias projetadas do corredor de transporte coletivo (BRT), a fim de permitir a sua abertura imediata ao tráfego. Em uma segunda fase de implantação essas vias deverão se interligar ao corredor de ônibus aos novos traçados da ESPM, inclusive no que tange a nova interseção de acesso ao Terminal Asa Sul – TAS.

O Projeto Geométrico do Sistema Viário da ESPM com TAS é composto por 10 eixos, conforme apresentado no quadro a seguir:

Quadro 1.1 – Eixos Projetados

EIXO	ESTACAS	EXTENSÃO (m)
38	0+00 a 3+30,000	330,00
39	0+00 a 3+23,91	323,91
40	0+00 a 1+77,189	177,189
41	0+00 a 1+09,281	109,281
42	0+00 a 1+06,152	106,152
43	0+00 a 0+93,034	93,034
44	0+00 a 1+90,644	190,644
45	0+00 a 3+26,383	326,383
46	0+00 a 3+29,116	329,116
47	0+00 a 1+44,835	144,835
48	0+00 a 1+66,672	166,672
49	0+00 a 3+20,000	320,000
50	0+00 a 0+35,042	35,042
51	0+00 a 0+18,086	18,086
52	0+00 a 1+10,434	110,434
53	0+00 a 1+65,00	165,00
54	0+00 a 0+96,78	96,78
55	0+00 a 2+65,36	265,36
56	0+00 a 1+80,32	180,32
57	0+00 a 1+88,68	188,68
58	0+00 a 2+23,35	223,35
59	0+00 a 0+49,16	49,16
60	0+00 a 0+43,02	43,02
61	0+00 a 3+57,62	357,62
62	0+00 a 2+22,75	222,75
63	0+00 a 1+72,00	172,00
64	0+00 a 1+81,79	181,79
TOTAL		4926,608


1. DETERMINAÇÃO DAS CARGAS DO TRÁFEGO

O tráfego atuante nas vias tem como base os estudos de tráfego realizados, sobretudo quanto à macrossimulação realizada, inclusive quanto ao tipo de veículos e cargas transportadas.

Os Estudos de Tráfego – apresentados em junho de 2010, assinala os volumes de tráfego em cada trecho das vias projetadas, para o transporte privado (autos) e transporte coletivo (ônibus). Trata-se de simulações resultantes da oferta de novas rotas e melhorias conferidas às existentes.

Análise ESPM Desempenho do Sistema Viário Pico da Manhã - Ano 2010 Nível de Serviço Vol/Cap até 0.70

Figura 1.1 – Carregamentos de Tráfego (em UVP) – Desempenho do Sistema Viário

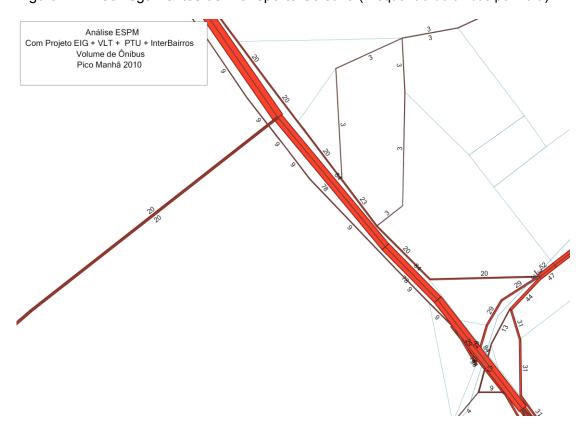


Figura 1.2 – Carregamentos de Transporte Coletivo (Frequência de ônibus por hora).

Ainda segundo as contagens volumétricas realizadas para o PTU/DF pode-se inferir que 1,5% da composição dos volumes corresponde a caminhões de 2 a 3 eixos, enquanto que 2% é de ônibus urbanos.

Na distribuição modal se ressalta as frequências de ônibus previstas para o corredor ESPM, que se situa entre 80 e 100 ônibus/h.

Para o dimensionamento dos pavimentos foi ainda prevista a evolução do tráfego ao longo do período de projeto para que seja avaliado o poder de destruição, de modo comparativo, que exercem as várias cargas oriundas do tráfego.

O critério adotado tem referência nos prognósticos de evolução das viagens motorizadas considerados no PDTU/DF, elaborado em 2009.

Tabela 1.1 - Projeção de Viagens no Pico para Transportes Coletivos – 2010 / 2020

PASSAGEIROS TRANSP. COLETIVO (hora/pico)				
TOTAL 2010 2020 (%)				
DF	253.168	293.428	1,159	

Tabela 1.2 - Projeção de Viagens no Pico para Transportes Privados – 2010 / 2020

PASSAGEIROS TRANSP. PRIVADO (hora/pico)				
TOTAL 2010 2020 (%)				
DF	156.408	209.947	1,342	

Com base nas projeções, infere-se que a taxa de crescimento anual de transporte coletivo corresponde a 1,5%, enquanto os transportes privados trabalham com uma taxa anual de 3%.

A previsão dos efeitos das solicitações do tráfego sobre o desempenho dos pavimentos é dificultada pelo fato de que o volume de tráfego e a magnitude das cargas aplicadas pelos veículos variam no tempo e no espaço durante a vida em serviço do pavimento.

O conhecimento dos efeitos cumulativos das solicitações do tráfego é fundamental para o dimensionamento dos pavimentos. Por causa da variabilidade das condições de tráfego, seus efeitos cumulativos são expressos por um denominador comum, os Fatores de Equivalência de Cargas (FEC).

Os FEC permitem a conversão de aplicações de diferentes solicitações em um número equivalente de aplicações da solicitação-padrão, possibilitando o dimensionamento e a previsão do desempenho de pavimentos para o tráfego misto real.

Sempre que possível, a avaliação do tráfego nas rodovias faz-se por contagens volumétricas classificatórias e por pesagens dos veículos parados ou em movimento.

Os veículos rodoviários são dos mais variados tipos, sendo que modificações nas características dos veículos se refletem em modificações nos efeitos gerados sobre os pavimentos. Dessa forma, torna-se necessário classificar o mais detalhadamente possível a frota que utilizará o pavimento a ser projetado, principalmente no que se refere aos caminhões e ônibus.

A classificação dos veículos pode ser feita de forma simplificada:

- Veículos de passeio ou veículos leves: automóveis e utilitários
- Veículos comerciais:
- Caminhões leves: 2 eixos simples, ambos com rodas simples
- Caminhões médios: 2 eixos simples, rodas traseiras duplas
- Caminhões pesados: 2 eixos, dianteiro simples e o traseiro em tandem
- Reboques e semi-reboques: outras combinações
- Ônibus: equivalente a caminhões leves

No entanto, é preferível que a classificação seja mais detalhada, pois podem ocorrer expressivas variações na carga aplicada ao pavimento entre caminhões de uma determinada subclasse, em função do tipo de veículo. Assim, os semi-reboques seriam classificados em: 2S1; 2S2; 3S2 e 3S3.

Nessa classificação, o primeiro algarismo representa o número de eixos do cavalo mecânico, e o segundo algarismo, o número de eixos do semi-reboque. Na Tabela 1.3 é apresentada a classificação de veículos adotada pelo DNIT.

Tabela 1.3 - Classificação de veículos adotada pelo DNIT

SÍMBOLO	CONFIGURAÇÃO	DESCRIÇÃO
		AUTOMÓVEL
	4	UTILITÁRIO
2C	11111	ÓNIBUS
2C		CAMINHÃO
3C		CAMINHÃO
40	7-11	CAMINHÃO
2S1	-	SEMI-REBOQUE
282	7. 10	SEMI-REBOQUE
253	T- 100	SEMI-REBOQUE
3S2	7-N-W	SEMI-REBOQUE
383	7-10	SEMI-REBOQUE
2C2		REBOQUE
2C3		REBOQUE

Fonte: DNIT Manual de reabilitação de pavimentos asfálticos. Ministério dos Transportes. Departamento Nacional de Infraestrutura de Transportes. 1998.

Além da classificação dos veículos, também é importante classificar os tipos de eixos, estabelecendo-se as cargas aplicadas por cada tipo de eixo de cada tipo de veículo.

A Resolução Nº 210 do Conselho Nacional de Trânsito (CONTRAN), de 13 de novembro de 2006, estabelece os limites de peso e dimensões para veículos que transitem por vias terrestres.

Tabela 1.4 - Limites legais de cargas por eixo

Tipo de eixo	Limite legal (por eixo)	Configura	ıção
Simples – rodas simples Ex.: caminhões leves	6,0 t		
Simples – rodas duplas Ex.: caminhões médios	10,0 t		
Tandem duplo Ex.: caminhões pesados	17,0 t		=
Tandem triplo Ex.: semi-reboque Usual: Tandem duplo modificado		Ţ	
Outras combinações Ex.: reboques e semi-reboques			

Os Fatores de Equivalência de Cargas constituem o conceito mais utilizado em todo o mundo no dimensionamento de pavimentos. Foram introduzidos pela AASHO (atual AASHTO, American Association of Highways and Transportation Officials) e pelo Bureau of Public Road, atual FHWA (Federal Highways Administration), logo após o final da AASHO Road Test, em 1961. A implementação inicial do conceito de equivalência de cargas deu-se através da utilização das equações de desempenho desenvolvidas pela equipe da AASHO, segundo as quais o desempenho é considerado em termos de variação do Índice de Serventia.

De acordo com o modelo proposto, os Fatores de Equivalência de Cargas podem ser definidos como um número de repetições de uma dada solicitação que é necessário para produzir uma deterioração de mesma magnitude que a produzida por uma aplicação da solicitação padrão.

O eixo padrão rodoviário brasileiro é um eixo simples de rodas duplas que transmite ao pavimento uma carga total de 8,2 toneladas (80 kN). Neste eixo a superfície de contato dos pneus com o pavimento é representada por uma área circular de 10,8 cm de raio e tensão de contato de 5,6 kgf/cm2, conforme mostrado na

Figura 1.3.

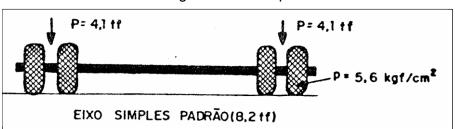


Figura 1.3 - Eixo padrão rodoviário

Os quatro tipos de eixos normalmente utilizados pelos veículos de carga que trafegam nas rodovias brasileiras são representados na Figura 1.4 e na Figura 1.5:

- Eixo simples de rodas simples ESRS
- Eixo simples de rodas duplas ESRD
- Eixos tandem duplos de rodas duplas EDRD
- Eixos tandem triplos de rodas duplas ETRD

Figura 1.4 - Eixos rodoviários brasileiros mais comuns

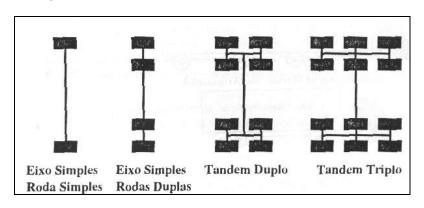
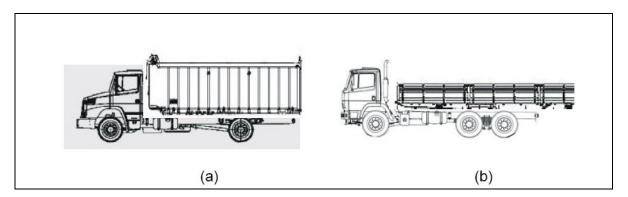



Figura 1.5 - Exemplos de Eixos Simples (a) e Tandem duplo (b)

Os fatores de equivalência da AASHTO baseiam-se na perda de serventia e são diferentes dos obtidos pelo USACE, que avaliaram os efeitos do carregamento na deformação permanente (afundamento nas trilhas de roda). As expressões para cálculo dos fatores de equivalência de operações são apresentadas na Tabela 1.5 e na Tabela 1.6, de acordo com os estudos realizados pelo USACE e pela AASHTO, respectivamente.

As curvas de correlação entre cargas por eixo e fatores de equivalência de operações utilizadas pelo método de dimensionamento de pavimentos flexíveis do antigo DNER baseiam nas expressões obtidas pelo USACE (Corpo de Engenheiros do Exército Norte- americano).

Os fatores de equivalência utilizados pelo método do DNER permitem a conversão de aplicações de diferentes solicitações em um número equivalente de aplicações do eixo padrão (8,2 tf). Para cada configuração de eixo real há uma conversão para eixo padrão.

Esta conversão é realizada por meio de ábacos, para o caso de eixos simples ou duplos e em tabela, para o caso de eixos triplos, conforme apresentado na Figura 1.6 e na Tabela 1.5

Figura 1.6 - Ábacos para determinação de fatores de equivalência de cargas Eixos simples e duplos

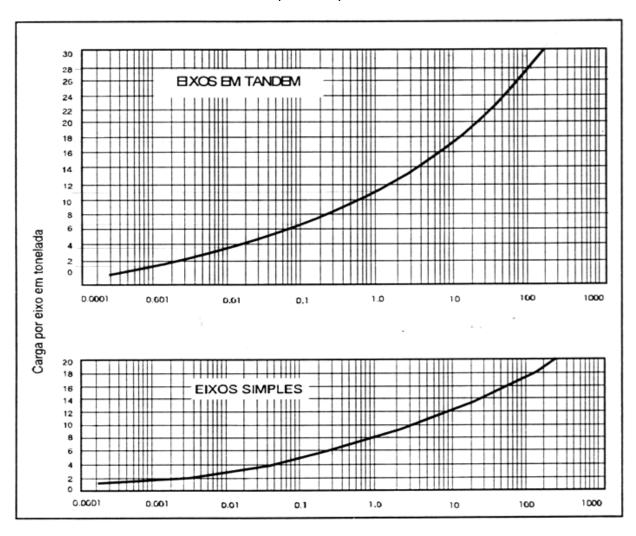


Tabela 1.5 - Fatores de equivalência para eixos triplos em tandem

Cargas por eixo	Fator de equivalência
(t)	de cargas
6	0,04
8	0,08
10	0,18
12	0,29
14	0,58
16	0,92
18	1,50
20	2,47
22	5,59
24	6,11
28	14,82
30	20,88
32	40,30
34	46,80
36	59,80
38	91,00
40	130,00

Tabela 1.6 – Expressões matemáticas para obtenção dos fatores de equivalência de operações, para diferentes tipos de eixos (USACE)

Tipos de Eixos	Faixas de Cargas (tf)	Equações (P em tf)
Eixo simples	0-8	$FEO = 2,0782 \times 10^{-4} \times P^{4,0175}$
	≥ 8	$FEO = 1,8320 \times 10^{-6} \times P^{6,2542}$
Eixo tandem duplo	0 – 11	$FEO = 1,5920 \times 10^{-4} \times P^{3,4720}$
	≥ 11	$FEO = 1,5280 \times 10^{-6} \times P^{5,4840}$
Eixo tandem triplo	0 – 18	$FEO = 8,0359 \times 10^{-5} \times P^{3,3549}$
	≥ 18	$FEO = 1,3229 \times 10^{-7} \times P^{5,5789}$
P = Peso bruto total s	obre o eixo	

Tabela 1.7 – Expressões matemáticas para obtenção dos fatores de equivalência de operações, para diferentes tipos de eixos (AASHTO)

Tipos de eixo	Equações (P em tf)
Simples de rodagem simples	$FEO = \left(\frac{P}{7,77}\right)^{4,32}$
Simples de rodagem dupla	$FEO = \left(\frac{P}{8,17}\right)^{4,32}$
Tandem duplo (rodagem dupla)	$FEO = \left(\frac{P}{15,08}\right)^{4,14}$
Tandem triplo (rodagem dupla)	$FEO = \left(\frac{P}{22,95}\right)^{4,22}$
P = Peso bruto total sobre o eixo	

Para efeito de projeto, o tráfego que transitará sobre determinado pavimento ao longo do período de projeto, sua vida útil de serviço, é convertido em um número de operações/solicitações de um eixo rodoviário padrão. Este número de solicitações é conhecido como número "N".

O número "N" é calculado pela seguinte expressão:

$$N = 365 \times FR \times FF \times FV \times \sum_{i=1}^{p} VMD_{i}$$

onde:

FF é o Fator de Faixa (vide Tabela 1.8);

FR é o Fator Climático Regional (vide Tabela 1.9);

VMD_i é Volume Médio Diário no ano *i*;

P é o período de projeto;

É o Fator de Veículo relativo ao tráfego da rodovia, calculado pela expressão:

$$FV = \frac{\sum p_i \times FV_i}{100}$$

onde:

 p_i é a percentagem de veículos da categoria i FV_i é o fator de veículo da categoria de veículos i

Tabela 1.8 - Fator de faixa

Faixas por sentido	Porcentagem de veículos comerciais na faixa de projeto
1	100
2	70 a 96
3	50 a 96

O Fator de Veículo, produto do fator de eixo pelo Fator de Carga, atua na compensação da grande diversidade de veículos e cargas que transitam pela via, transformando estas cargas e veículos diversos em uma quantidade de operações do eixo padrão que seja equivalente em termos de feito destrutivo do pavimento. Ou seja, o Fator de Veículo transforma um veículo qualquer, com um carregamento qualquer, em uma quantidade de solicitações equivalente do eixo padrão de 8,2 toneladas que causaria o mesmo efeito destrutivo no pavimento.

Como o número de eixos por veículo é bastante variado, utiliza-se o Fator de Eixo para determinar o número médio de eixos por veículo que circula em uma determinada via.

$$FE = \sum (NE \times \% NE)$$

Onde:

NE é o número eixos do veículo

%NE é a porcentagem de determinado tipo de veículo em relação ao total.

O Fator Climático Regional (*FR*) é utilizado para considerar as variações de umidade às quais os materiais constituintes do pavimento estão sujeitos durante as estações do ano, e que influem diretamente na capacidade de suporte dos mesmos. Na Tabela 1.9 são apresentados os Fatores climáticos regionais sugeridos para o Brasil, em função da altura média anual de chuva em milímetros.

Tabela 1.9 – F ator Climático Regional (FR)

Altura média anual	Fator Climático
de	Regional
chuva	(FR)
Até 800	0,7
De 800 a 1500	1,4
Mais de 1500	1,8

Com base no estudo de tráfego, realizado na projeção de 2010, foram obtidos os volumes de tráfego constantes na Tabela 1.10

Tabela 1.10 – Volumes de tráfego (Junho de 2010)

Via	Volume horário – Pico da manhã		Volume Diário Extrapolado para projeto
	Total	Ônibus	Ônibus
Eixos do Corredor Exclusivo de Ônibus	197	197	1.970
Eixo 58 (ESPM sentido interseção com via W3)	2.194	50	500

Para determinação dos volumes diários de ônibus foi adotado o fator-hora-pico = 10%, implicando, por exemplo, em um volume de 500 ônibus/dia para uma frequência de 50 ônibus/hora no pico da manhã.

Ainda com base nos dados de tráfego, neste Projeto, optou-se por utilizar a metodologia proposta pela Instrução de Projeto n° 2 da Prefeitura Municipal de São Paulo, baseada em pesquisas de tráfego e estudos estatísticos. Isso porque a metodologia mencionada considera o volume de ônibus como o principal fator determinante, sendo o caso de áreas muito urbanizadas, à exemplo de Brasília.

Após a utilização das taxas de crescimento apresentadas na Tabela 1.1 e Tabela 1.2, a projeção de tráfego do pavimento flexível é apresentada da seguinte forma:

Tabela 1.11 – Projeção de Tráfego para o Eixo 58

	TABELA-PROJEÇÃO DE TRÁFEGO								
Período	Carros de	Ôni	bus	TOTAL					
Periodo	Passeio	2C	3C						
2013	0	500	0	500					
2014	0	508	0	508					
2015	0	515	0	515					
2016	0	523	0	523					
2017	0	531	0	531					
2018	0	539	0	539					
2019	0	547	0	547					
2020	0	555	0	555					
2021	0	563	0	563					
2022	0	572	0	572					
2023	0	580	0	580					

A Tabela 1.12 apresenta os valores das cargas por eixo, cálculo dos fatores de equivalência para cada eixo e o fator de equivalência total para cada veículo admitindo a tolerância de 7,5 no peso por eixo ou 5% no peso bruto conforme resolução CONTRAN nº 103/99, 12/98 e 104/99 utilizados para o cálculo do número "N.

Tabela 1.12 – Valores de carga por eixo

	FATORES DE VEÍCULOS - USACE																											
	VEÍCULOS VAZIOS																											
Configuração Carga por Eixo (t)									Fat	or de Equ	ivalência																	
Collingu	ração	ESRS	ESRD	ETD	ETT	Total	ESRS		ESR	D			ET	D		ETT	Total	ESRS		ES	RD			ET	TD		ETT	FVi
Ônibus	2C	1	1			2	5,04	8,40									13,44	0,1379	1,1055	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	1,2434
	VEÍCULOS CARREGADOS (LEI DA BALANÇA) - TOLERÂNCIA DE 7,5% POR EIXO E 5,0% PARA PBTC																											
Configu	racão		Conjun	to de l	Eixos					(Carga	por Eix	xo (t)									Fat	or de Equ	ivalência				
Collingu	ração	ESRS	ESRD	ETD	ETT	Total	ESRS		ESR	D			ET	D		ETT	Total	ESRS		ES	RD			ET	TD		ETT	FVi
Ônibus	2C	1	1			2	6,30	10,50									16,80	0,3381	4,4632	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	4,8013
												FA	TORE	ES DI	E VEÍC	ULO	S - AA	SHTO										
														VEÎ	CULOS	VAZI	os											
Configu	racão		Conjun	to de l	Eixos					(Carga	por Eix	xo (t)					Fator de Equivalência										
Collingu	ração	ESRS	ESRD	ETD	ETT	Total	ESRS		ESR	D			ET	D		ETT	Total	ESRS		ES	RD			ET	TD		ETT	FVi
Ônibus	2C	1	1			2	5,04	8,40									13,44	0,1541	1,1274	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	1,2816
								VEÍCU	LOS CA	RREG	ADOS	S (LEI D	A BAL	ANÇ	A) - TOI	ÆRÂN	CIA DI	E 7,5% I	OR EIX	O E 5,0	% PARA	PBTC						
Configu	racão		Conjun	to de l	Eixos					(Carga	por Eix	xo (t)					Fator de Equivalência										
Collingu	ı aşav	ESRS	ESRD	ETD	ETT	Total	ESRS		ESR	D			ET	D		ETT	Total	ESRS		ES	RD			ET	D		ETT	FVi
Ônibus	2C	1	1			2	6,30	10,50									16,80	0,4041	2,9562	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	3,3604

A Tabela 1.13 apresenta os valores dos fatores de veículos para o eixo de pavimento flexível.

Tabela 1.13 – Fator de Veículo para o Eixo 58

	CÁLCULO DOS FATORES DE VEÍCULO - FV							
Vaíau	Veículos-tipo VMD		Fator d	e Veículo USACE	Fator de Veículo AASHTO			
veicu			FVi	(VMD*FV)/∑VMD	FVi	(VMD*FV)/∑VMD		
Ônibus	2C	500	4,09	4,090	2,94	2,945		
To	otal	500		FVusace = 4,090		FVaashto = 2,945		

Na Tabela 1.14 são apresentados os parâmetros necessários aos cálculos do número "N" para o período de projeto, nos métodos USACE e AASHTO, no eixo de pavimento flexível.

Tabela 1.18 – Cálculo do maior número "N"

PROJEÇÃO DO VMDAT E DO NÚMERO "N"												
		Volume	s de Tráfego ((VMDAT)			Valores do l	Número "N"				
Ano		Veícul	os-tipo		T 1	US	USACE		USACE AASHTO		ВНТО	Observações
	Moto	Passeio	Coletivo	Carga	Total	Ano	Acumulado	Ano	Acumulado			
2013	0	0	500	0	500	3,73E+05	3,73E+05	2,69E+05	2,69E+05	Projeto		
2014	0	0	508	0	508	3,79E+05	7,52E+05	2,73E+05	5,41E+05	1º ano		
2015	0	0	515	0	515	3,84E+05	1,14E+06	2,77E+05	8,18E+05			
2016	0	0	523	0	523	3,90E+05	1,53E+06	2,81E+05	1,10E+06			
2017	0	0	531	0	531	3,96E+05	1,92E+06	2,85E+05	1,38E+06			
2018	0	0	539	0	539	4,02E+05	2,32E+06	2,89E+05	1,67E+06	5° ano		
2019	0	0	547	0	547	4,08E+05	2,73E+06	2,94E+05	1,97E+06			
2020	0	0	555	0	555	4,14E+05	3,15E+06	2,98E+05	2,27E+06			
2021	0	0	563	0	563	4,20E+05	3,57E+06	3,03E+05	2,57E+06			
2022	0	0	572	0	572	4,27E+05	3,99E+06	3,07E+05	2,88E+06			
2023	0	0	580	0	580	4,33E+05	4,43E+06	3,12E+05	3,19E+06	10° ano		
Со	mposição Pero	entual de Tráf	ego		Parâmetros ad	dotados no cálci	ulo do número de	e operações do	eixo padrão de	8,2t		
Moto	Passeio	Coletivo	Carga		Fatores de	Veículos - FV		Fator o	limático	Fator de pista		
0,00	0,00	100,00	0,00	FVι	ısace	FVa	ashto	F	R	FP		
Ta	ıxas de Crescii	Crescimento de Tráfego			,09	2,	94	1,	000	0,500		
Moto	Passeio	Coletivo	Carga		A	no inicial para c	álculo do Númer	o "N"		2013		
3,00%	3,00%	1,50%	1,50%		Período de projeto para o cálculo do número "N" (anos) 10							

De acordo com a IP-02/PMSP, as vias urbanas são classificadas, para fins de dimensionamento de pavimento, de acordo com tráfego previsto para as mesmas, nos seguintes tipos:

- **Tráfego Leve** Ruas de características essencialmente residenciais, para as quais não é previsto o tráfego de ônibus, podendo existir ocasionalmente passagens de caminhões e ônibus em número não superior a 20 por dia, por faixa de tráfego, caracterizado por um número "N" típico de 10⁵ solicitações do eixo simples padrão (80 kN) para o período de projeto de 10 anos;
- *Tráfego Médio* Ruas ou avenidas para as quais é prevista a passagem de caminhões e ônibus em número de 21 a 100 por dia, por faixa de tráfego, caracterizado por número "N" típico de 5x10⁵ solicitações do eixo simples padrão (80 kN) para o período de 10 anos;
- *Tráfego Meio Pesado* Ruas ou avenidas para as quais é prevista a passagem de caminhões ou ônibus em número 101 a 300 por dia, por faixa de tráfego, caracterizado por número "N" típico de 2x10⁶ solicitações do eixo simples padrão (80 kN) para o período de 10 anos;
- *Tráfego Pesado* Ruas ou avenidas para as quais é prevista a passagem de caminhões ou ônibus em número de 301 a 1000 por dia, por faixa de tráfego, caracterizado por número "N" típico de 2 x 10⁷ solicitações do eixo simples padrão (80 kN) para o período de projeto de 10 anos a 12 anos;
- *Tráfego Muito Pesado* Ruas ou avenidas para as quais é prevista a passagem de caminhões ou ônibus em número de 1001 a 2000 por dia, na faixa de tráfego mais solicitada, caracterizada por número "*N*" típico superior a 5x10⁷ solicitações do eixo simples padrão (80 kN) para o período de 12 anos.

Com base nestes critérios, as vias foram classificadas conforme mostrado na Tabela 1.20.

Tabela 1.19 - Eixos Projetados - Pavimento

EIXO	EXTENSÃO (m)	Descrição	Número "N"	Tipo de Pavimento	Tipo de Serviço
53	165				
54	97				
55	265		1,71 x 10 ⁷	Concreto	Implantação
56	180	Sistema Viário da ESPM com TAS – Corredor exclusivo			
57	189				
59	49				
60	43				
61	358				
64	182				
58	214	EPSM sentido interseção com via W3	4,43 x 10 ⁶	CBUQ	Implantação

Tabela 1.20 - Tráfego nas Vias

Via	Classificação	VMD máximo ônibus	N
Eixos do Corredor Exclusivo de Ônibus	Tráfego Pesado	1.970	1,71 x 10 ⁷
Eixo 58 (ESPM sentido interseção com via W3)	Tráfego Pesado	650	4,43 x 10 ⁶

O tráfego do corredor de concreto é composto exclusivamente por veículos de transporte de passageiros, prevendo-se, para efeito de dimensionamento do pavimento, a operação de apenas de ônibus convencionais do tipo 2C, formados por combinação de um eixo simples de rodas simples (ESRS) dianteiro e um eixo simples de rodas duplas (ESRD) traseiro (Figura 1.7).

Figura 1.7 - Ônibus convencional do tipo 2C

Considerou-se que 80% do tráfego ocorre com a carga máxima legal (6,3t ESRS + 10,5t ESRD) e os demais 20% com 80% da carga legal máxima (5,0t ESRS + 8,4t ESRD).

A taxa de crescimento anual do tráfego considerada foi a adotada no PDTU de 1,159, obtendo-se os volumes anuais de tráfego mostrados na Tabela 1.21.

Tabela 1.21 - Volumes anuais de tráfego por tipo de eixo no corredor de ônibus

Ano	VMD	100% da c máx	•	80% da carga legal máxima		
		ESRS 5t	ESRD 10t	ESRS 4t	ESRD 8t	
Ano 0	719.050	575.240	575.240	143.810	143.810	
Ano 1	729.836	583.869	583.869	145.967	145.967	
Ano 2	740.783	592.627	592.627	148.157	148.157	
Ano 3	751.895	601.516	601.516	150.379	150.379	
Ano 4	763.173	610.539	610.539	152.635	152.635	
Ano 5	774.621	619.697	619.697	154.924	154.924	
Ano 6	786.240	628.992	628.992	157.248	157.248	
Ano 7	798.034	638.427	638.427	159.607	159.607	
Ano 8	810.004	648.004	648.004	162.001	162.001	
Ano 9	822.155	657.724	657.724	164.431	164.431	
Ano 10	834.487	667.590	667.590	166.897	166.897	
Ano 11	847.004	677.603	677.603	169.401	169.401	
Ano 12	859.709	687.767	687.767	171.942	171.942	
Ano 13	872.605	698.084	698.084	174.521	174.521	
Ano 14	885.694	708.555	708.555	177.139	177.139	
Ano 15	898.979	719.183	719.183	179.796	179.796	
Ano 16	912.464	729.971	729.971	182.493	182.493	
Ano 17	926.151	740.921	740.921	185.230	185.230	
Ano 18	940.043	752.035	752.035	188.009	188.009	
Ano 19	954.144	763.315	763.315	190.829	190.829	
Ano 20	968.456	774.765	774.765	193.691	193.691	
TOTAL	16.876.479	13.501.183	13.501.183	3.375.296	3.375.296	

Para o dimensionamento da espessura das placas de concreto, foram considerados os Fatores de Segurança para as Cargas (FSC), apresentados na Tabela 1.22, adotando-se valor igual a 1,5.

Tabela 1.22 - Fatores de segurança para as cargas (FSC)

Ruas com tráfego com pequena porcentagem de caminhões e pisos em condições semelhantes de tráfego (estacionamentos)	
Estradas e vias com moderada frequência de caminhões	1,1
Altos volumes de caminhões	1,2
Pavimentos que necessitem de um desempenho acima do normal	Até 1,5

2. CAPACIDADE DE SUPORTE DO SUBLEITO

Os estudos geotécnicos considerados foram os mesmo executados para o projeto da ESPM, consistindo em 10 furos de sondagens a trado (ST-21 a ST-30), nos quais foram coletadas amostras de solo para ensaios de caracterização e de compactação com ISC (CBR).

A Tabela 2.1 apresenta o resumo dos resultados dos ensaios geotécnicos. Os boletins de sondagens e os resultados dos ensaios constam de relatório anexo.

Tabela 2.1 - Resumo dos resultados dos Ensaios Geotécnicos

Furo	hot (%)	Dmax (Kg/m³)	ISC (%)	Exp (%)
ST-21	26,0	1318	9,9	0,37
ST-22	28,7	1326	8,6	0,33
ST-23	26,1	1280	7,4	0,27
ST-24	30,0	1298	8,4	0,32
ST-25	28,9	1361	7,0	0,39
ST-26	28,9	1327	7,1	0,46
ST-27	26,5	1380	8,0	0,40
ST-28	28,8	1336	7,5	0,36
ST-29	28,2	1316	8,0	0,33
ST-30	28,5	1352	9,2	0,32

Os laudos dos estudos geotécnicos são apresentados no Anexo I, no final do presente relatório.

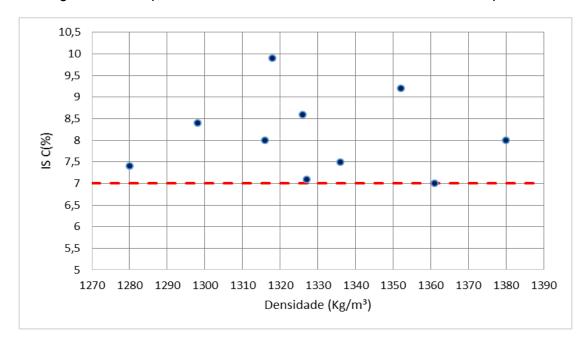


Figura 2.1 – Dispersão dos valores de ISC e densidade do solo compactado

Da análise dos resultados dos ensaios, depreende-se que as amostras coletadas são bastante homogêneas, como pode ser observado na figura 2.1. Desta forma, em todo o projeto será utilizado um único valor representativo da capacidade de suporte do subleito.

O cálculo do ISC de projeto foi feito com base na metodologia preconizada no Manual de Pavimentação do DNIT, aplicando-se as seguintes expressões:

$$ISC_p = \overline{ISC} - \frac{1,29 \times \sigma}{\sqrt{n}} - 0,68 \times \sigma$$

Em que:

$$\overline{ISC} = \frac{\sum ISC_i}{n}$$

$$\sigma = \sqrt{\frac{\sum (ISC_i - \overline{ISC})^2}{n-1}}$$

n é o número de amostras

Desta forma obteve que o ISC_p é igual a 7,1%. A critério do projetista o ISC_p adotado será 7,0%.

3. DIMENSIONAMENTO EM PAVIMENTO FLEXÍVEL

O dimensionamento do pavimento asfáltico visa assegurar que a repetição da passagem dos eixos dos veículos não irá causar o trincamento excessivo da camada de revestimento por fadiga dentro do período de vida do projeto e, também, garantir que as espessuras das camadas de sua estrutura, bem como suas características, sejam capazes de minimizar os efeitos do afundamento da trilha de roda (acúmulo excessivo de deformação permanente), considerando a compatibilidade entre as deformabilidades dos materiais.

Diversos fatores incidem sobre os danos nas estruturas dos pavimentos tais como: o volume de tráfego, o peso e pressão das rodas do carregamento, a variação lateral da passagem dos veículos, a qualidade dos materiais, o efeito do clima, principalmente da temperatura e da umidade, etc. Como não é possível possuir o conhecimento exato destes fatores, o dimensionamento é realizado com os parâmetros médios ou característicos, com um grau de risco estatístico adotado como aceitável.

Para dimensionamento dos pavimentos utilizou-se o método Engº Murillo Lopes de Souza, preconizado no Manual de Projeto de Pavimentos do DNIT.

De acordo com o nível de trafego, o método recomenda as espessuras mínimas de revestimento betuminoso, conforme mostrado na tabela 3.1.

Tabela 3.1 - Espessura mínima de revestimento

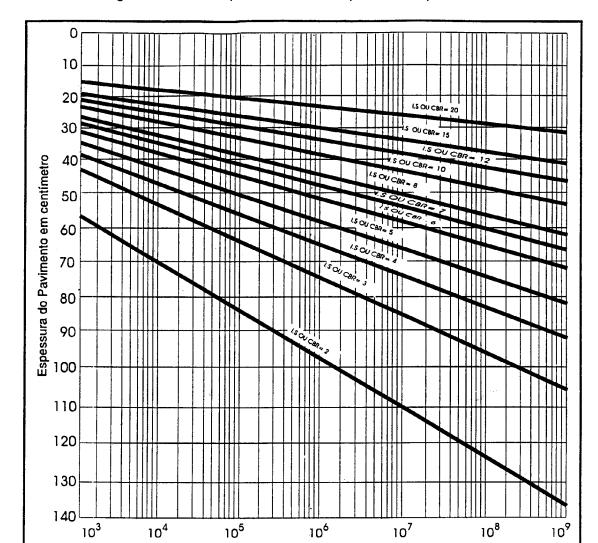
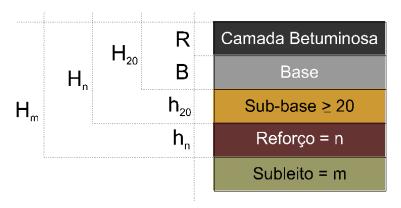

N	Espessura Mínima do Revestimento Betuminoso
$N \leq 10^6$	Tratamentos superficiais betuminosos
$10^6 < N \le 5 \times 10^6$	Revestimentos betuminosos com 5,0 cm de espessura
$5 \times 10^6 < N \le 10^7$	Concreto betuminoso com 7,5 cm de espessura
$10^7 < N \le 5 \times 10^7$	Concreto betuminoso com 10,0 cm de espessura
$N > 5 \times 10^7$	Concreto betuminoso com 12,5 cm de espessura

Tabela 3.2 - Espessura mínima para o revestimento da via

Nível de Tráfego	Vias	N	Espessura mínima do revestimento betuminoso
Pesado	Eixo 58 (ESPM sentido interseção com via W3)	4,43 x 10 ⁶	Concreto betuminoso com 5,0 cm de espessura

O gráfico apresentado no método, reproduzido na Figura 3.1, permite o cálculo da espessura total do pavimento em função de N e do ISC do subleito. A espessura total obtida do gráfico é expressa em termos de material granular, ou seja, de um material que apresente coeficiente de equivalência estrutural igual a um (k = 1,0). Alternativamente ao gráfico, pode ser utilizada a equação abaixo:

$$H_R = 77,67 \times N^{0.0482} \times ISC^{-0.598}$$



Operações de eixo de 18.000 lb (8,2 ton.)

Figura 3.1 - Ábaco para cálculo da espessura do pavimento

Deve-se ressaltar ainda que a espessura mínima para a camada de base granular é de 10 cm.

A figura abaixo apresenta a simbologia utilizada na designação das diferentes camadas do pavimento.

onde:

 H_m é a espessura total necessária para proteger um material com ISC = m

 H_n é a espessura da camada de pavimento com ISC = n

 H_{20} é a espessura de pavimento sobre a sub-base

*h*₂₀é a espessura da sub-base

B é a espessura da base

R é a espessura do revestimento.

Determinadas as espessuras H_m , H_n , H_{20} e R, as espessuras da base, sub-base e reforço são obtidas pela resolução sucessiva das seguintes inequações:

$$\begin{aligned} R \times K_R + B \times K_B &\geq H_{20} \\ R \times K_R + B \times K_B + H_{20} \times K_S &\geq H_n \\ R \times K_R + B \times K_B + H_{20} \times K_S + H_n \times K_{REF} &\geq H_m \end{aligned}$$

Os termos K_R e K_B são os coeficientes de equivalência estrutural obtidos a partir da Tabela 3.3. Os coeficientes da sub-base, K_{SB} , e do reforço do subleito, K_{REF} , são obtidos pelas expressões:

$$K_{SB} = \sqrt[2]{\frac{CBR_{SB}}{3CBR_{SL}}} \le 1$$
 e $K_{REF} = \sqrt[2]{\frac{CBR_{REF}}{3CBR_{SL}}} \le 1$

Tabela 3.3 – Coeficientes de equivalência estrutural – IP-05/PMSP

CAMADA DO PAVIMENTO	COEFICIENTE ESTRUTURAL (K)
Base ou Revestimento de Concreto Asfáltico	2,00
Base ou Revestimento de Concreto Magro/Compactado com Rolo	2,00
Base ou Revestimento de Pré-Misturado a Quente, de Graduação Densa / BINDER	1,80
Base ou Revestimento de Pré-Misturado a Frio, de Graduação Densa	1,40
Base ou Revestimento Asfáltico por Penetração	1,20
Paralelepípedos	1,00
Base de Brita Graduada Simples, Macadame Hidráulico e Estabilizadas Granulometricamente	1,00
Sub-bases Granulares ou Estabilizadas com Aditivos	≤ 1,00
Reforço do Subleito	≤ 1,00
Base de Solo-Cimento ou BGTC, com resistência á compressão aos 7 dias, superior a 4,5 MPa	1,70
Base de BGTC, com resistência à compressão aos 7 dias, entre 2,8 e 4,5 MPa	1,40
Base de Solo-Cimento, com resistência à compressão aos 7 dias, menor que 2,8 e maior ou igual a 2,1 MPa	1,20
Base de Solo melhorado com Cimento, com resistência à compressão aos 7 dias, menor que 2,1 MPa	1,00

Aplicando-se os dados relativos ao projeto, ou seja, aqueles apresentados nas Tabelas e o ábaco da Figura 3.1, além das inequações acima especificadas e os valores dos coeficientes de equivalência da Tabela 3.3 e das equações dadas, $K_R = 2.0$, $K_B = 1.0$ e $K_{SB} = 0.98$, tem-se a seguinte estrutura de pavimento:

Tabela 3.4 - Resultados obtidos do dimensionamento em centímetros

Tráfego (N)	R		Н		В		h ₂₀	
	Mínimo	Adotado	20	<i>n</i> = 7	Mínimo	Adotado	Mínimo	Adotado
4,43 x 10 ⁶	5,0	6,0	27,0	50,7	15,0	20,0	19,0	20,0

Observa-se que para as vias de tráfego com N entre 10⁶ a 5x10⁶, apesar da espessura mínima de revestimento exigida ser de 5,0 cm, optou-se por uma espessura de 6,0 cm para se evitar que a camada de sub-base tivesse uma espessura superior a 20 cm e ser preciso executá-la em duas etapas, pois não é recomendável a compactação de camadas com espessuras superiores a 20 cm.

Figura 3.2 - Estrutura típica do pavimento flexível

CBUQ - FAIXA "C"

Base
(ISC > 80%, 100% Proctor Modificado)

Sub-base
(ISC > 20%, 100% Proctor Intermediário)

Subleito
(100% Proctor Normal)
Mínimo 15 cm

Tabela 3.5 – Estrutura do pavimento

Camada	Espessura (cm)	Material			
CBUQ – Capa de Rolamento	6	Concreto Betuminoso Usinado a Quente – Capa de Rolamento			
Base	20	Brita Graduada Simples			
Dase	20	CBR ≥ 80,00%.			
Sub-base	20	Solo Cal, CBR ≥ 20,00%.			

Na Tabela 3.6 são apresentadas as estruturas de pavimento relativamente a cada eixo projetado.

Tabela 3.6 - Eixos Projetados - Pavimento em CBUQ

EIXO	EXTENSÃO (m)	Descrição	Número "N"	Tipo de Pavimento	Tipo de Serviço	_	Camadas de Pavimentação em cm		
	` ,				,	Rev	Base	Sub	
58	214	Via ESPM sentido interseção com via W3	4,43 x 10 ⁶	CBUQ	Implantação	6	20	20	

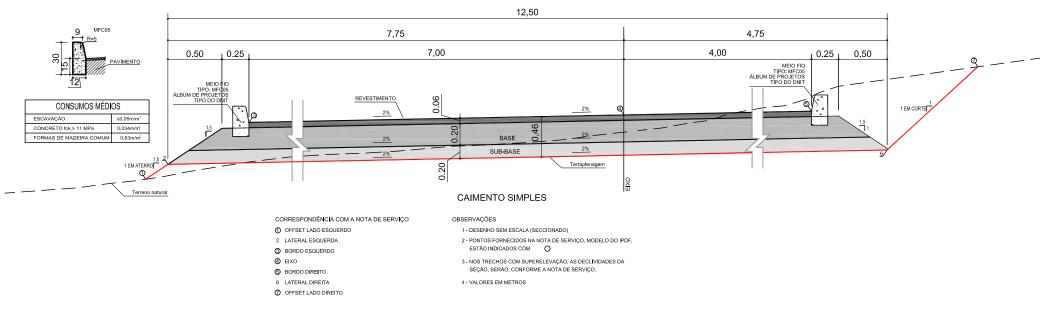
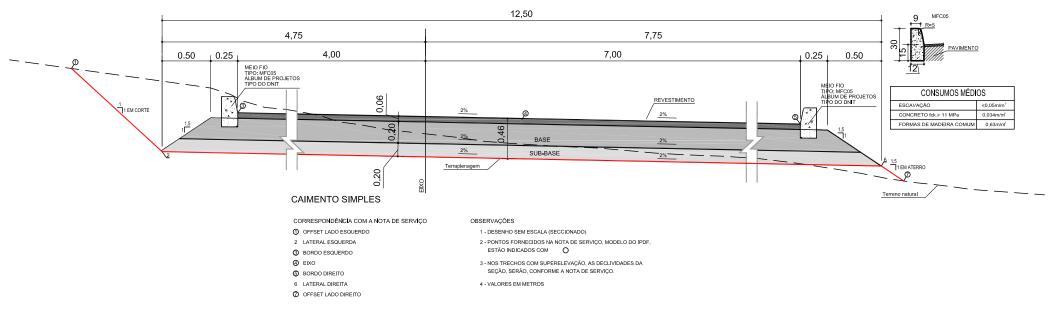
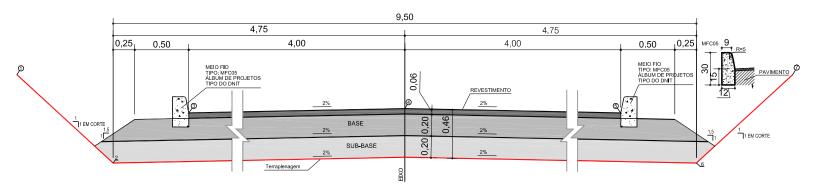

Com base no dimensionamento apresentado neste item, foi obtido o quantitativo que está resumidamente exposto na Tabela 3.7.

Tabela 3.7 – Tabela resumo dos quantitativos dos serviços – Pavimento Flexível


ITEM	CÓDIGO	DISCRIMINAÇÃO DO SERVIÇO	D.M.T. (km)	UNID.	QUANTIDADE
1.		PAVIMENTAÇÃO			
1.1	2 S 02 110 00	Regularização do subleito		m²	1.810
1.2	2 S 02 230 00	Sub-base solo estabilizado granul. s/ mistura	8,06	m³	385
1.3	2 S 02 200 01	Base solo estabilizado granul. s/ mistura	42,06	m²	409
1.4	2 S 02 300 00	Imprimação	0,01	m²	2.161
1,5	2 S 02 540 51	CBUQ - capa rolamento AC/BC	11,07	t	316
2.		Fornecimento de material betuminoso			
2.1		Asfalto diluído CM-30		t	2,6
2.2		Cimento asfáltico de petróleo CAP-50/70		t	19,0
3.		Aquisição de material betuminoso			
3.1		Asfalto diluído CM-30	636,00	t	2,6
3.2		Cimento asfáltico de petróleo CAP-50/70	636,00	t	19,0

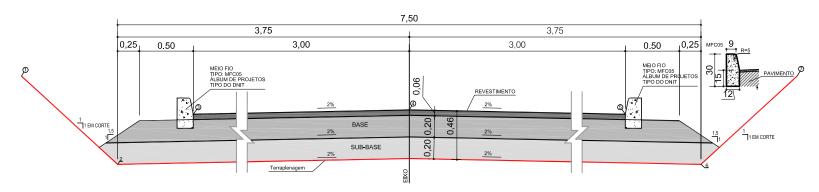
A seguir se apresentam as seções transversais relativas a cada eixo de implantação em CBUQ.


SEÇÃO TRANSVERSAL EIXOS 38

SEÇÃO TRANSVERSAL EIXOS 39

SEÇÃO TRANSVERSAL EIXO 40, 47, 52 e 58

CAIMENTO DUPLO


CORRESPONDÊNCIA COM A NOTA DE SERV**I**ÇO

- ① OFFSET LADO ESQUERDO
- 2 LATERAL ESQUERDA
- 3 BORDO ESQUERDO
- @ EIXO
- BORDO DIREITO
- 6 LATERAL DIREITA
- O OFFSET LADO DIREITO

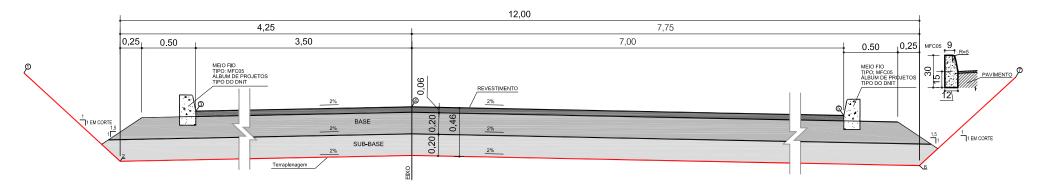
OBSERVAÇÕES

- 1 DESENHO SEM ESCALA (SECCIONADO)
- 2 PONTOS FORNECIDOS NA NOTA DE SERVIÇO, MODELO DO IPDF, ESTÃO INDICADOS COM
- 3 NOS TRECHOS COM SUPERELEVAÇÃO, AS DECLIVIDADES DA SEÇÃO, SERÃO, CONFORME A NOTA DE SERVIÇO.
- 4 VALORES EM METROS

SEÇÃO TRANSVERSAL EIXO 41, 42, 43, 44, 48 e 50

CAIMENTO DUPLO

CORRESPONDÊNCIA COM A NOTA DE SERVIÇO


- ① OFFSET LADO ESQUERDO
- 2 LATERAL ESQUERDA

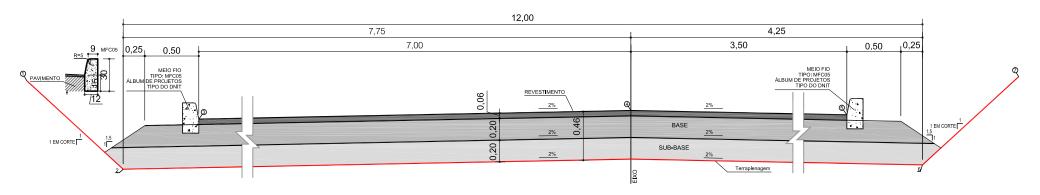
 3 BORDO ESQUERDO
- Ø EWA
- BORDO DIREITO
- 6 LATERAL DIREITA
- O OFFSET LADO DIREITO

OBSERVAÇÕES

- 1 DESENHO SEM ESCALA (SECCIONADO)
- 2 PONTOS FORNECIDOS NA NOTA DE SERVIÇO, MODELO DO IPDF, ESTÃO INDICADOS COM O
- 3 NOS TRECHOS COM SUPERELEVAÇÃO, AS DECLIVIDADES DA SEÇÃO, SERÃO, CONFORME A NOTA DE SERVIÇO.
- 4 VALORES EM METROS

SEÇÃO TRANSVERSAL EIXO 45

CAIMENTO DUPLO

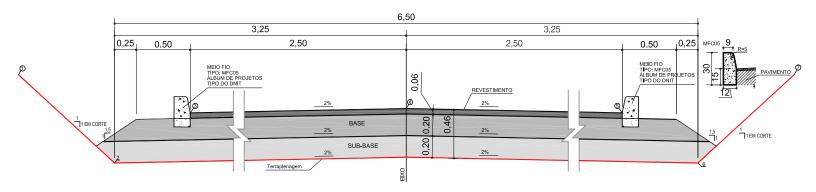

CORRESPONDÊNCIA COM A NOTA DE SERVIÇO

- ① OFFSET LADO ESQUERDO
- 2 LATERAL ESQUERDA
- 3 BORDO ESQUERDO
- 6 BORDO DIREITO
- 6 LATERAL DIREITA
- O OFFSET LADO DIREITO

OBSERVAÇÕES

- 1 DESENHO SEM ESCALA (SECCIONADO)
- 2 PONTOS FORNECIDOS NA NOTA DE SERVIÇO, MODELO DO IPDF, ESTÃO INDICADOS COM
- 3 NOS TRECHOS COM SUPERELEVAÇÃO, AS DECLIVIDADES DA SEÇÃO, SERÃO, CONFORME A NOTA DE SERVIÇO.
- 4 VALORES EM METROS

SEÇÃO TRANSVERSAL EIXO 46

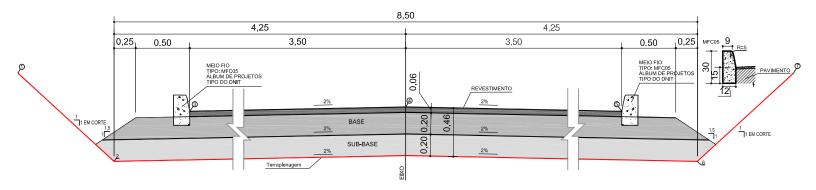

CAIMENTO DUPLO

CORRESPONDÊNCIA COM A NOTA DE SERVIÇO

- ① OFFSET LADO ESQUERDO
- 2 LATERAL ESQUERDA
- 3 BORDO ESQUERDO
- 4 EIXO
- 6 BORDO DIREITO
- 6 LATERAL DIREITA
- O OFFSET LADO DIREITO

- 1 DESENHO SEM ESCALA (SECCIONADO)
- 2 PONTOS FORNECIDOS NA NOTA DE SERVIÇO, MODELO DO IPDF, ESTÃO INDICADOS COM
- 3 NOS TRECHOS COM SUPERELEVAÇÃO, AS DECLIVIDADES DA SEÇÃO, SERÃO, CONFORME A NOTA DE SERVIÇO.
- 4 VALORES EM METROS

SEÇÃO TRANSVERSAL EIXO 50 e 51


CAIMENTO DUPLO

CORRESPONDÊNCIA COM A NOTA DE SERVIÇO

- ① OFFSET LADO ESQUERDO
- 2 LATERAL ESQUERDA
- 3 BORDO ESQUERDO
- EIXO
- 6 BORDO DIREITO
- 6 LATERAL DIREITA
- O OFFSET LADO DIREITO

- 1 DESENHO SEM ESCALA (SECCIONADO)
- 2 PONTOS FORNECIDOS NA NOTA DE SERVIÇO, MODELO DO IPDF, ESTÃO INDICADOS COM
- 3 NOS TRECHOS COM SUPERELEVAÇÃO, AS DECLIVIDADES DA SEÇÃO, SERÃO, CONFORME A NOTA DE SERVIÇO.
- 4 VALORES EM METROS

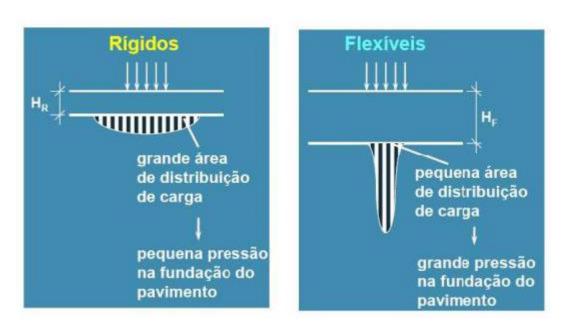
SEÇÃO TRANSVERSAL EIXO 62 e 63

CAIMENTO DUPLO

CORRESPONDÊNCIA COM A NOTA DE SERVIÇO

- ① OFFSET LADO ESQUERDO
- 2 LATERAL ESQUERDA
- 3 BORDO ESQUERDO
- 5 BORDO DIREITO
- 6 LATERAL DIREITA
- O OFFSET LADO DIREITO

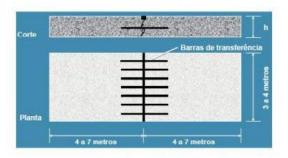
- 1 DESENHO SEM ESCALA (SECCIONADO)
- 2 PONTOS FORNECIDOS NA NOTA DE SERVIÇO, MODELO DO IPDF, ESTÃO INDICADOS COM
- 3 NOS TRECHOS COM SUPERELEVAÇÃO, AS DECLIVIDADES DA SEÇÃO, SERÃO, CONFORME A NOTA DE SERVIÇO.
- 4 VALORES EM METROS


4. DIMENSIONAMENTO EM PAVIMENTO RÍGIDO

4.1. PARÂMETROS PARA O DIMENSIONAMENTO

Os pavimentos rígidos são tecnologicamente reconhecidos por serem adequados na construção de vias rodoviárias e urbanas de tráfego intenso e pesado devido a sua extraordinária durabilidade e desempenho estrutural e a certas situações criticas de carregamento e de ambiência, como aeroportos, áreas portuárias, postos de pesagem de veículos, corredores de ônibus, praças de pedágio, frigoríficos e determinados pisos industriais sujeitos a solicitação de veículos especiais, cuja configuração de eixos de rodas foge aos padrões usuais.

Basicamente, no pavimento rígido o concreto absorve grande parte dos esforços que são exercidos sobre o pavimento e acaba desempenhando um papel de base e revestimento, enquanto no pavimento flexível uma parte destes esforços e transmitida às camadas inferiores.


Figura 4.1 – Comparação da distribuição de carga entre pavimentos rígidos e flexíveis

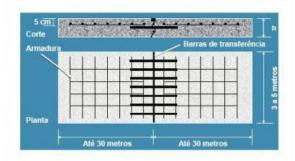
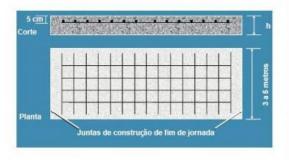
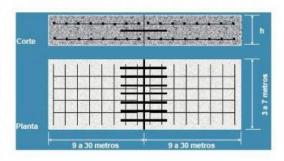

Os pavimentos rígidos de Concreto de Cimento Portland (CCP) podem ser de vários tipos, conforme mostrado na Figura 4.2.

Figura 4.2 - Tipos de pavimento rígido.


PAVIMENTO DE CONCRETO SIMPLES COM BARRAS DE TRANSFERÊNCIA

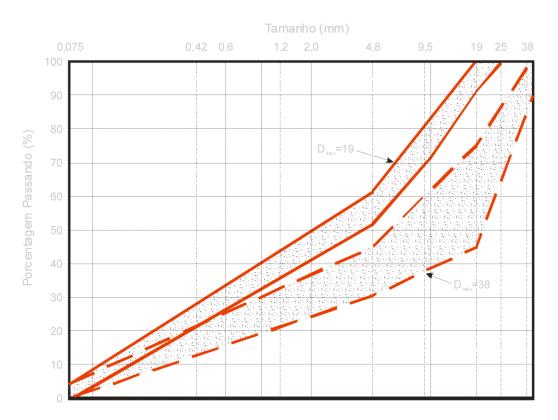

PAVIMENTO COM ARMADURA DISTRIBUÍDA DESCONTÍNUA SEM FUNÇÃO ESTRUTURAL

PAVIMENTO COM ARMADURA CONTÍNUA SEM FUNÇÃO ESTRUTURAL

PAVIMENTO DE CONCRETO ESTRUTURALMENTE ARMADO

O pavimento de concreto simples pode ser executado com ou sem barras de transferência que atuam apenas na transmissão de esforços entre as placas. Tais placas são apoiadas diretamente sobre a fundação, sendo todos os esforços, tanto de compressão quanto de tração, resistidos por elas.

Neste Projeto será adotado o pavimento de concreto simples com barras de transferências, tendo em vista que estas possibilitam uma diminuição da espessura das placas. Além disso, o uso de barras de transferência distribui os esforços entre as placas diminuindo a possibilidade de bombeamento de material de fundação próximo às juntas.


A prática atual no projeto de pavimentos rígidos tem sido a intercalação de uma subbase entre a placa de concreto e o subleito. Esta sub-base é uma camada delgada, com as seguintes funções:

- Uniformizar o suporte disponível ao longo da faixa do pavimento,
- Evitar os efeitos das mudanças excessivas de volume dos solos do subleito,
- Eliminar a ocorrência do fenômeno de bombeamento de finos plásticos, porventura presentes no solo de fundação, quando da presença de água em excesso e cargas pesadas.

Adotou-se, portanto, nesse Projeto uma **sub-base de concreto rolado**, por não ser bombeável e consolidável. Esta camada de concreto rolado deve possuir as características:

- Resistência característica à compressão simples, aos 7 dias, entre 3,0 e 7,0 MPa;
- Relação cimento:agregado entre 1:15 e 1:22;
- Faixa granulométrica indicada na Figura 4.3;
- Espessura da camada de 10 cm.

Figura 4.3 - Faixas granulométricas recomendadas para sub-bases de concreto rolado, com dimensão máxima de 19mm e 38mm

Os principais métodos de dimensionamento de pavimentos de concreto são: o Guia da AASHTO (1993), o Método do Corpo de Engenheiros do Exercito dos EUA (PCASE 2003) e os Métodos da Portland Cement Association: PCA/66 e PCA/84. Para o dimensionamento de pavimentos de concreto simples o DNIT (2005) cita apenas os dois métodos da Portland Cement Association: PCA/66 e PCA/84. No Brasil, o método PCA/84 é o mais utilizado no dimensionamento de placas de concreto simples e será utilizado nesse projeto.

Para o dimensionamento da espessura do pavimento rígido, o parâmetro relativo ao suporte do subleito é o Coeficiente de Recalque (k), também denominado de Módulo de Reação ou Módulo de Westergaard.

Este parâmetro é determinado em uma prova de carga estática, conforme a norma DNIT 055/2004-ME, que se baseia na norma ASTM-D 1196 (1977) e em diretrizes específicas do *United States Army Corps of Engineers*.

Nesta prova de carga são correlacionadas as pressões verticais transmitidas ao subleito por meio de uma placa rígida (com 76 cm de diâmetro, pelo menos) e os deslocamentos verticais correspondentes.

Para a determinação do coeficiente de recalque de projeto admite-se lançar mão de uma correlação entre os valores do coeficiente de recalque do solo do subleito e os valores obtidos para o Índice de Suporte Califórnia (ISC) deste subleito.

Para determinação do coeficiente de recalque do sistema subleito/sub-base, foi utilizado o ábaco apresentado na Figura 4.4. Considerando-se, portanto, o ISC de projeto de **7,0%** e a espessura da sub-base de concreto rolado igual a **10cm**, obteve-se do ábaco o valor de k igual a **127MPa/m**, que será utilizado como valor de projeto.

Figura 4.4 - Aumento de k devido à presença de sub-base de concreto rolado

Valor de suporte do subleito		Coeficiente de recalque no topo do siste (MPa/m), para espessuras de sub-base igu				
CBR (%)	k (MPa/m)	10 cm	12,5 cm	15 cm		
2	16	65	77	98		
3	24	87	101	126		
4	30	101	118	145		
5	34	111	128	158		
6	38	120	138	169		
7	41	127	145	177		
8	44	133	152	186		
9	47	140	159	194		
10	49	144	164	199		
11	51	148	168	204		
12	53	152	173	209		
13	54	154	175	211		
14	56	158	179	216		
15	57	160	182	219		
16	59	164	186	224		
17	60	166	188	226		
18	61	168	190	229		
19	62	170	192	231		
20	63	172	194	233		

Para dimensionamento da espessura da placa de concreto foi utilizado o método da Portland Cement Association – PCA – versão 1984, que introduz os progressos e conhecimentos obtidos nos dois últimos decênios nas áreas de cálculo de tensões, projeto geométrico, construção e gerência desse tipo de pavimento, acrescentando novos enfoques e modificando profundamente o método adotado desde 1966.

Neste método emprega-se um modelo de análise estrutural de elementos finitos e leva-se em conta:

- O tipo e o grau de transferência de carga nas juntas transversais,
- Os efeitos da existência ou não de acostamentos de concreto,
- A contribuição estrutural das sub-bases de concreto pobre rolado ou convencional, ou então de sub-bases tratadas com cimento,
- A ação dos eixos tandem triplos,
- Introduz um modelo de ruína por erosão da fundação do pavimento (no qual se embute um modelo de ruína por formação de "degraus" ou escalonamento "faulting" nas juntas transversais), usando-o concomitantemente com o modelo modificado de fadiga.

O método PCA/84 se baseia em quatro pontos:

- i. Estudos teóricos clássicos sobre o comportamento de placas de concreto (Westergaard, Pickett et allii) e modernas análises computacionais empregando elementos finitos (Tayabji e Colley);
- ii. Ensaios de laboratório e em modelos, sobre comportamento e influência de juntas, sub-bases e acostamentos no desempenho de pavimentos de concreto,
- iii. Pistas experimentais, especialmente da AASHO (hoje, AASHTO), além de estudos levados a efeito por diversos órgãos rodoviários e aeroportuários;
- iv. Observação metódica de pavimentos em serviço;

4.2. ESPESSURA DA PLACA

Utilizou-se para a 1ª tentativa do dimensionamento do pavimento rígido a espessura de 20 centímetros apresentada na Tabela 4.3 com os parâmetros de dimensionamento mostrados na Tabela 4.1.

Tabela 4.1 - Parâmetros de Dimensionamento

Parâmetro	Adotado neste Projeto				
Acostamento	Considerado de concreto, visto que os veículos não trafegarão na borda da placa, por esta ter uma largura extra de 0,50 m.				
Barras de transferência	Serão utilizadas				
Resistência característica a tração na flexão do concreto	4,5 MPa				
Tráfego	Considerados ônibus com dois eixos (2C), sendo 80% do tráfego com a carga máxima legal (6,3t ESRS + 10,5t ESRD) e os demais 20% com 80% da carga legal máxima (6,3t ESRS + 10,5t ESRD)				
	Fator de segurança das cargas de 1,5				
	VMD inicial de 1970 ônibus/dia				
	Taxa de crescimento anual de 1,5%				

Inicialmente para a situação de pavimento rígido com acostamento em concreto utilizou-se a Tabela 4.2 para obtenção da tensão equivalente para os eixos simples e tandem duplo.

Tabela 4.2 – Tensão equivalente para a situação com acostamento de concreto (Eixo Simples/Eixo tandem duplo)

Espessura da placa		k do sis	stema sublei	to-sub-base	(MPa/m)	
(cm)	20	40	60	80	140	180
10	4,18/3,48	3,65/3,10	3,37/2,94	3,19/2,85	2,85/2,74	2,72/2,72
11	3,68/3,07	3,23/2,71	2,99/2,56	2,83/2,47	2,55/2,35	2,43/2,32
12	3,28/2,75	2,88/2,41	2,67/2,26	2,54/2,17	2,29/2,05	2,19/2,02
13	2,95/2,49	2,60/2,17	2,41/2,02	2,29/1,94	2,07/1,82	1,99/1,78
14	2,68/2,27	2,36/1,97	2,19/1,83	2,08/1,75	1,89/1,63	1,81/1,59
15	2,44/2,08	2,15/1,80	2,00/1,67	1,90/1,59	1,73/1,48	1,66/1,44
16	2,24/1,93	1,97/1,66	1,84/1,53	1,75/1,46	1,59/1,35	1,53/1,31
17	2,06/1,79	1,82/1,54	1,70/1,42	1,62/1,35	1,48/1,24	1,42/1,20
18	1,91/1,67	1,69/1,43	1,57/1,32	1,50/1,25	1,37/1,15	1,32/1,11
19	1,77/1,57	1,57/1,34	1,46/1,23	1,40/1,17	1,28/1,07	1,23/1,03
20	1,65/1,48	1,46/1,26	1,37/1,16	1,30/1,10	1,19/1,00	1,15/0,96
21	1,55/1,40	1,37/1,19	1,28/1,09	1,22/1,03	1,12/0,93	1,08/0,90
22	1,45/1,32	1,29/1,12	1,20/1,03	1,15/0,97	1,05/0,88	1,01/0,85
23	1,37/1,26	1,21/1,07	1,13/0,98	1,08/0,92	0,99/0,83	0,96/0,80
24	1,29/1,20	1,15/1,01	1,07/0,93	1,02/0,87	0,94/0,79	0,90/0,76
25	1,22/1,14	1,08/0,97	1,01/0,88	0,97/0,83	0,89/0,75	0,86/0,72
26	1,16/1,09	1,03/0,92	0,96/0,84	0,92/0,79	0,84/0,71	0,81/0,68
27	1,10/1,04	0,98/0,88	0,91/0,81	0,87/0,76	0,80/0,68	0,77/0,65
28	1,05/1,00	0,93/0,85	0,87/0,77	0,83/0,73	0,76/0,65	0,74/0,62
29	1,00/0,96	0,89/0,81	0,83/0,74	0,79/0,70	0,73/0,62	0,70/0,60
30	0,95/0,93	0,85/0,78	0,79/0,71	0,76/0,67	0,70/0,60	0,67/0,57
31	0,91/0,89	0,81/0,75	0,76/0,69	0,72/0,64	0,67/0,58	0,64/0,55
32	0,87/0,86	0,78/0,73	0,73/0,66	0,69/0,62	0,64/0,55	0,62/0,53
33	0,84/0,83	0,74/0,70	0,70/0,64	0,67/0,60	0,61/0,53	0,59/0,51
34	0,80/0,80	0,71/0,68	0,67/0,62	0,64/0,58	0,59/0,52	0,57/0,49
35	0,77/0,78	0,69/0,66	0,64/0,60	0,61/0,56	0,57/0,50	0,55/0,47

Para a tensão equivalente na 1ª tentativa (), para um coeficiente de recalque do sistema de 127MPa/m, utilizou-se um valor de 1,214 (eixo simples). O cálculo da tensão equivalente (Tabela 4.2) por interpolação para o coeficiente de recalque de 127MPa/m, é exposto a seguir:

$$\begin{cases} 80 \to 1,30 \\ 127 \to x \\ 140 \to 1,19 \end{cases}$$

$$\frac{1,30 - 1,19}{80 - 140} = \frac{x - 1,19}{127 - 140}$$

$$x = 1,214$$

A obtenção do fator de erosão, com barras de transferência e acostamento de concreto, é apresentada na Tabela 4.3.

Tabela 4.3 - Fator de erosão - com barras de transferência e acostamento de concreto

Espessura da placa	k do sistema subleito-sub-base (MPa/m)					
(cm)	20	40	60	80	140	180
10	3,27/3,25	3,24/3,17	3,22/3,14	3,21/3,12	3,17/3,11	3,15/3,11
11	3,16/3,16	3,12/3,07	3,10/3,03	3,09/3,00	3,05/2,98	3,03/2,97
12	3,05/3,08	3,01/2,98	2,99/2,93	2,98/2,90	2,94/2,86	2,92/2,84
13	2,96/3,01	2,92/2,90	2,89/2,85	2,88/2,81	2,84/2,76	2,82/2,74
14 .	2,87/2,94	2,82/2,83	2,80/2,77	2,78/2,74	2,75/2,67	2,73/2,65
15	2,79/2,88	2,74/2,77	2,72/2,71	2,70/2,67	2,67/2,60	2,65/2,57
16	2,71/2,82	2,66/2,71	2,64/2,65	2,62/2,60	2,59/2,53	2,57/2,50
17	2,64/2,77	2,59/2,65	2,57/2,59	2,55/2,55	2,51/2,46	2,49/2,43
18	2,57/2,72	2,52/2,60	2,50/2,54	2,48/2,49	2,44/2,41	2,42/2,37
19	2,51/2,67	2,46/2,56	2,43/2,49	2,41/2,44	2,38/2,35	2,36/2,32
20	2,45/2,63	2,40/2,51	2,37/2,44	2,35/2,40	2.31/2.31	2,30/2,27
21	2,39/2,58	2,34/2,47	2,31/2,40	2,29/2,35	2,26/2,26	2,24/2,22
22	2,34/2,54	2,29/2,43	2,26/2,36	2,24/2,31	2,20/2,22	2,18/2,18
23	2,29/2,50	2,23/2,39	2,21/2,32	2,19/2,27	2,15/2,18	2,13/2,13
24	2,24/2,46	2,18/2,35	2,16/2,28	2,13/2,23	2,10/2,14	2,08/2,10
25	2,19/2,43	2,14/2,31	2,11/2,24	2,09/2,20	2,05/2,10	2,03/2,06
26	2,15/2,39	2,09/2,28	2,06/2,21	2,04/2,16	2,00/2,07	1,98/2,02
27	2,10/2,36	2,05/2,24	2,02/2,18	2,00/2,13	1,96/2,03	1,94/1,99
28	2,06/2,32	2,01/2,21	1,98/2,14	1,95/2,10	1,91/2,00	1,89/1,96
29	2,02/2,29	1,97/2,18	1,93/2,11	1,91/2,06	1,87/1,97	1,85/1,93
30	1,98/2,26	1,93/2,15	1,90/2,08	1,87/2,03	1,83/1,94	1,81/1,90
31	1,95/2,23	1,89/2,12	1,86/2,05	1,84/2,01	1,79/1,91	1,77/1,87
32	1,91/2,20	1,85/2,09	1,82/2,03	1,80/1,98	1,76/1,88	1,74/1,84
33	1,87/2,17	1,82/2,06	1,78/2,00	1,76/1,95	1,72/1,86	1,70/1,81
34	1,84/2,15	1,78/2,04	1,75/1,97	1,73/1,92	1,69/1,83	1,67/1,79
35	1,81/2,12	1,75/2,01	1,72/1,95	1,69/1,90	1,65/1,80	1,63/1,76

Para o fator de erosão utilizado na 1ª tentativa (), para o coeficiente de recalque do sistema de 127MPa/m, utilizou-se um valor de 2,319 (eixo simples). O cálculo do fator de erosão (Tabela 4.4) por interpolação para o coeficiente de recalque de 127MPa/m, é exposto a seguir:

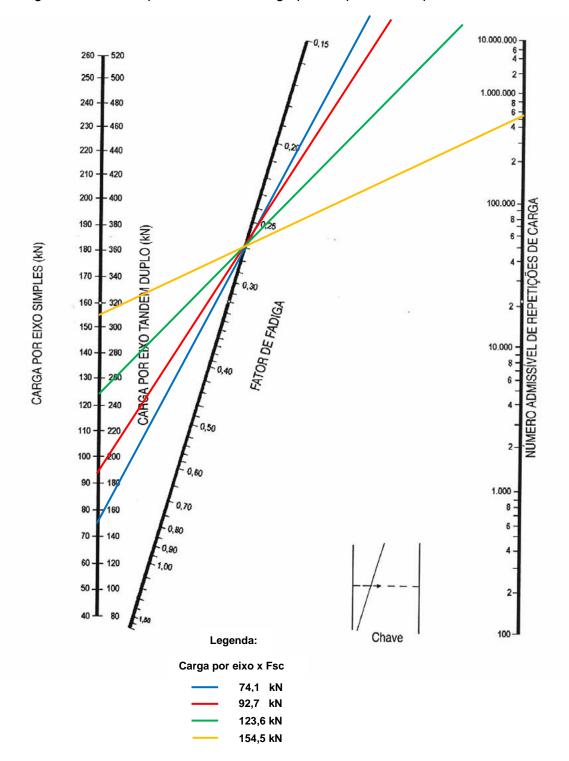

$$\begin{cases} 80 \to 2,35\\ 127 \to y\\ 140 \to 2,31 \end{cases}$$
$$\frac{2,35 - 2,31}{80 - 140} = \frac{y - 2,31}{127 - 140}$$
$$y = 2,319$$

Tabela 4.4 - Cálculo da Espessura de 20cm para Pavimento de Concreto.

Projeto:	T15 - Complement	tação do Sistema Vi	ário da ESPM c	om TAS				
Espessura -	Tentativa:		20 cm					
Juntas com	BT:		Sim		Não			
\mathbf{K}_{sb} :			127 MPa/m					
Acostamen	to de concreto:		Sim		Não			
Resistencia	característica à tra	ção na flexão:	4,5 MPa					
Período de	projeto:		20 anos					
Pator de Se	gurança de carga -	Fsc:	1,5					
	Cálculo de Eixos Totais por Classe de Carga (20 anos)							
			Análise de F		Fadiga	Análise de Erosão		
Carga por eixo (tf)	Carga por eixo x Fsc (tf)	Carga por eixo x Fsc (kN)	Nº de repetições previstas	Nº de repeticões admissíveis	Consumo de Fadiga (%)	Nº de repeticões admissíveis	Consumo de Fadiga (%)	
			T	ensão equivalente:	1,214			
Eix	o Simples			Fator de fadiga:	0,270			
	1	T	ı	Fator de erosão:	2,319			
5,0	7,6	74,1	379.193	ilimitado	0,0			
6,3	9,5	92,7	1.516.772	ilimitado	0,0			
8,40	12,6	123,6	379.193	ilimitado	0,0			
10,5	15,8	154,5	1.516.772	580.000	261,5			

Com base nos cálculos efetuados (Tabela 4.3) observa-se que para a carga por eixo de 10,5tf na análise da fadiga (Figura 4.5) o valor não é aceitável, necessitando alteração da espessura do pavimento de concreto.

Para o cálculo da 2ª tentativa do dimensionamento do pavimento rígido com espessura de 22cm, apresentada na Tabela 4.5, utilizou os mesmos parâmetros de dimensionamento mostrados na Tabela 4.1.

Para a tensão equivalente (Tabela 4.2) na 2ª tentativa com espessura de 22cm (), com o mesmo coeficiente de recalque do sistema (127MPa/m), utilizou-se um valor de 1,072 (eixo simples). O cálculo da tensão equivalente (Tabela 4.2) por interpolação para o coeficiente de recalque de 127MPa/m, é exposto a seguir:

$$\begin{cases} 80 \to 1,15 \\ 127 \to x \\ 140 \to 1,05 \end{cases}$$

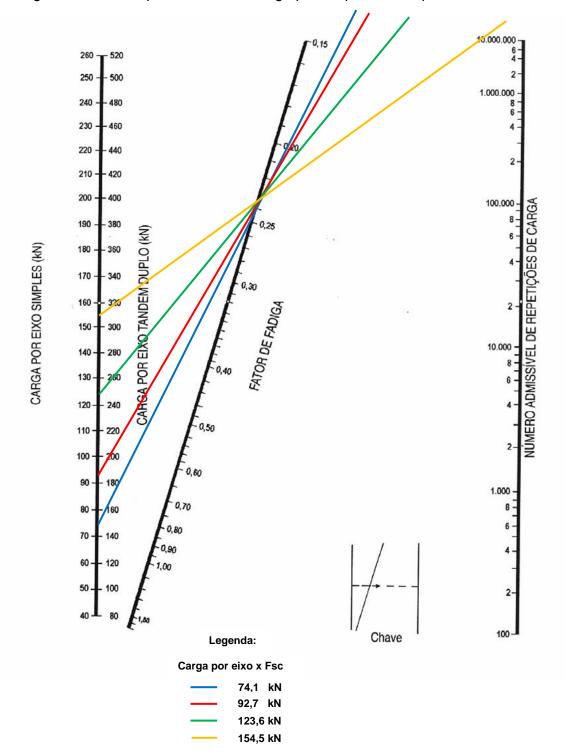
$$\frac{1,15 - 1,05}{80 - 140} = \frac{x - 1,05}{127 - 140}$$

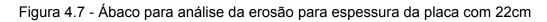
$$x = 1,072$$

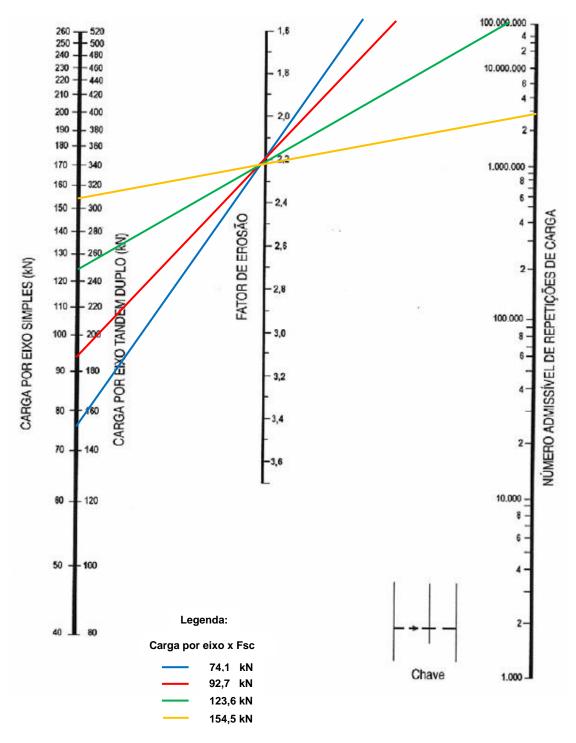
Com relação ao fator de erosão, com barras de transferência e acostamento de concreto, de acordo com a Tabela 4.3, adotou-se o valor de 2,209 (eixo simples). O cálculo do fator de erosão (Tabela 4.3) por interpolação para o coeficiente de recalque de 127MPa/m, é exposto a seguir:

$$\begin{cases} 80 \rightarrow 2,24 \\ 127 \rightarrow y \\ 140 \rightarrow 2,20 \end{cases}$$

$$\frac{2,24-2,20}{80-140} = \frac{y-2,20}{127-140}$$


$$y = 2,209$$


Tabela 4.5 - Cálculo da Espessura de 22cm para Pavimento de Concreto.


Projeto: T15 - Complementação do Sistema Viário da ESPM com TAS								
Espessura -	Tentativa:		22 cm					
Juntas com	BT:		Sim		Não			
K _{sb} :			127 MPa/m					
Acostamen	to de concreto:		Sim		Não			
Resistencia	característica à tra	ção na flexão:	4,5 MPa					
Período de	projeto:		20 anos					
Pator de Se	gurança de carga -	Fsc:	1,5					
	Cálculo de Eixos Totais por Classe de Carga (20 anos)							
				Análise de	Análise de Fadiga		Erosão	
Carga por eixo (tf)	Carga por eixo x Fsc (tf)	Carga por eixo x Fsc (kN)	Nº de repetições previstas	Nº de repeticões admissíveis	Consumo de Fadiga (%)	Nº de repeticões admissíveis	Consumo de Fadiga (%)	
			To	ensão equivalente:	1,072			
Eix	o Simples			Fator de fadiga:	0,238			
				Fator de erosão:	2,209			
5,0	7,6	74,1	379.193	ilimitado	0,0	ilimitado	0,0	
6,3	9,5	92,7	1.516.772	ilimitado	0,0	ilimitado	0,0	
8,40	12,6	123,6	379.193	ilimitado	0,0	ilimitado	0,0	
10,5	15,8	154,5	1.516.772	ilimitado	0,0	2.800.000	54,2	

Com base nos cálculos efetuados (Tabela 4.5) observa-se que para a carga por eixo de 10,5tf na análise da fadiga (Figura 4.6) e da erosão (Figura 4.7) os valores apresentam ilimitados para os números de repetições admissíveis.

Com base nos cálculos efetuados (Tabela 4.5) adotou-se a seguinte estrutura de pavimento (Figura 4.8).

Figura 4.8 - Estrutura típica do Pavimento Rígido

Optou-se pela colocação de uma camada de reforço do subleito com 15 cm de espessura com objetivo de intercalar uma camada com rigidez intermediária entre a camada de subleito e a camada de concreto rolado.

A seguir se apresentam as seções transversais relativas a cada eixo de implantação em Pavimento Rígido.

4.3. ANÁLISE COMPARATIVA DE VIABILIDADE ECONÔMICA DA SOLUÇÃO ADOTADA

A estrutura típica do pavimento rígido, apresentada na Figura 4.10, foi optada pelo projetista como àquela que melhor se comporta nos quesitos técnicos e econômicos. Dessa forma, parente os cálculos estabelecidos no item 4.2, optou-se por verificar a viabilidade da redução da camada final de concreto com o incremento de 2,50cm de Concreto Rolado. Essa alternativa se mostrou atrativa, pois mediante os dados fornecidos pela tabela SICRO o CCR (2 S 02 603 50) apresentou custo consideravelmente menor que a placa de concreto (2 S 02 606 50).

De forma análoga ao que foi apresentado no item anterior, o dimensionamento do pavimento rígido iniciou-se com a 1ª tentativa em espessura de 20cm apresentada na Tabela 4.6 com os parâmetros de dimensionamento mostrados na Tabela 4.1.

Para a tensão equivalente na 1ª tentativa (), para um coeficiente de recalque do sistema de 145MPa/m, utilizou-se um valor de 1,185 (eixo simples). O cálculo da tensão equivalente (Tabela 4.2) por interpolação para o coeficiente de recalque de 145MPa/m, é exposto a seguir:

$$\begin{cases} 140 \to 1,19 \\ 145 \to x \\ 180 \to 1,15 \end{cases}$$
$$\frac{1,19 - 1,15}{140 - 180} = \frac{x - 1,15}{145 - 180}$$
$$x = 1,185$$

Para o fator de erosão utilizado na 1ª tentativa, para o coeficiente de recalque do sistema de 145MPa/m, utilizou-se um valor de 2,309 (eixo simples). O cálculo do fator de erosão (Tabela 4.6) por interpolação para o coeficiente de recalque de 145MPa/m, é exposto a seguir:

$$\begin{cases} 140 \to 2,31\\ 145 \to y\\ 180 \to 2,30 \end{cases}$$

$$\frac{2,31 - 2,30}{140 - 180} = \frac{y - 2,30}{145 - 180}$$

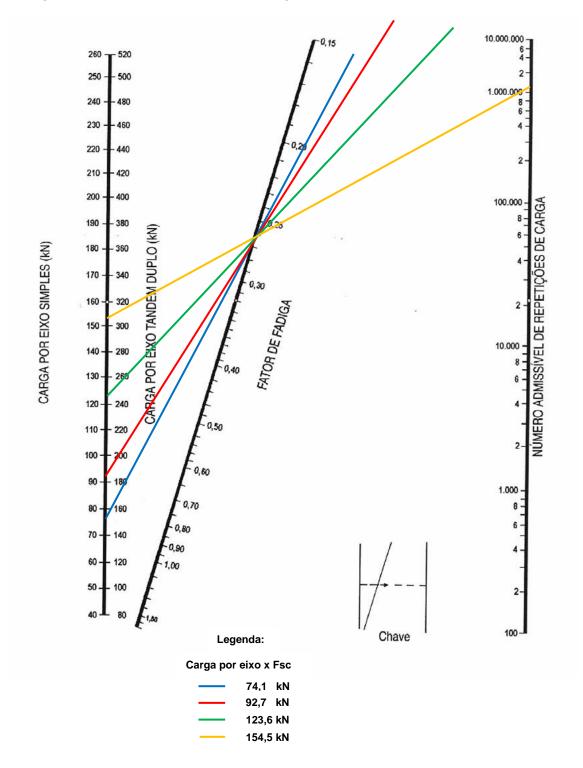

$$y = 2,309$$

Tabela 4.6 - Cálculo da Espessura de 20cm para Pavimento de Concreto

Projeto:	T15 - Complement	tação do Sistema Vi	ário da ESPM o	om TAS			
Espessura -	Tentativa:		20 cm				
Juntas com	BT:		Sim		Não		
K _{sb} :			145 MPa/m				
Acostamen	to de concreto:		Sim		Não		
Resistencia	característica à tra	ção na flexão:	4,5 MPa				
Período de	projeto:		20 anos				
Pator de Se	gurança de carga -	Fsc:	1,5				
			•	r Classe de Carga (2	() anos)		
	<u> </u>	Calculo de	Análise de Fadiga Análise de Erosão				
			Nº de	Analise de	radiga	Analise de	Erosao
Carga por eixo (tf)	Carga por eixo x Fsc (tf)	Carga por eixo x Fsc (kN)	repetições previstas	Nº de repeticões admissíveis	Consumo de Fadiga (%)	Nº de repeticões admissíveis	Consumo de Fadiga (%)
	•		To	ensão equivalente:	1,185		
Eix	o Simples			Fator de fadiga:	0,263		
				Fator de erosão:	2,309		
5,0	7,6	74,1	379.193	ilimitado	0,0		
6,3	9,5	92,7	1.516.772	ilimitado	0,0		
8,40	12,6	123,6	379.193	ilimitado	0,0		
10,5	15,8	154,5	1.516.772	1.350.000	112,4		

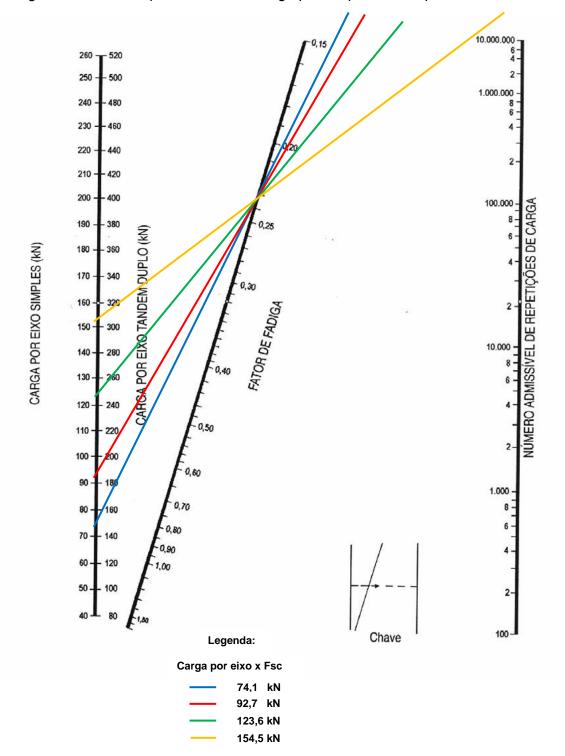
Com base nos cálculos efetuados (Tabela 4.6) observa-se que para a carga por eixo de 10,5tf na análise da fadiga (Figura 4.9) o valor não é aceitável. Dessa forma, faz se necessária a alteração da espessura do pavimento de concreto.

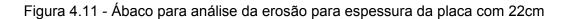
Para o cálculo da 2ª tentativa do dimensionamento do pavimento rígido com espessura de 22cm, apresentada na Tabela 4.8, utilizou os mesmos parâmetros de dimensionamento mostrados na Tabela 4.1.

Para a tensão equivalente (Tabela 4.2) na 2ª tentativa com espessura de 22cm (), com o mesmo coeficiente de recalque do sistema (145MPa/m), utilizou-se um valor de 1,045 (eixo simples). O cálculo da tensão equivalente (Tabela 4.2) por interpolação para o coeficiente de recalque de 145MPa/m, é exposto a seguir:

$$\begin{cases} 140 \to 1,05 \\ 145 \to x \\ 180 \to 1,01 \end{cases}$$
$$\frac{1,05 - 1,01}{140 - 180} = \frac{x - 1,01}{145 - 180}$$
$$x = 1,045$$

Com relação ao fator de erosão, com barras de transferência e acostamento de concreto, de acordo com a Tabela 4.3, adotou-se o valor de 2,198 (eixo simples). O cálculo do fator de erosão (Tabela 4.3) por interpolação para o coeficiente de recalque de 145MPa/m, é exposto a seguir:


$$\begin{cases} 140 \to 2,20 \\ 145 \to y \\ 180 \to 2,18 \end{cases}$$
$$\frac{2,20 - 2,18}{140 - 180} = \frac{y - 2,18}{145 - 180}$$
$$y = 2,198$$


Tabela 4.8 - Cálculo da Espessura de 22cm para Pavimento de Concreto.

Projeto:	T15 - Complement	tação do Sistema Vi	ário da ESPM o	om TAS			
Espessura -	Tentativa:		22 cm				
Juntas com	BT:		Sim		Não		
K _{sb} :			145 MPa/m				
Acostamen	to de concreto:		Sim		Não		
Resistencia	característica à tra	ção na flexão:	4,5 MPa				
Período de	projeto:		20 anos				
Pator de Se	gurança de carga -	Fsc:	1,5				
		Cálculo de	Eixos Totais po	r Classe de Carga (2	0 anos)		
				Análise de	Fadiga	Análise de Erosão	
Carga por eixo (tf)	Carga por eixo x Fsc (tf)	Carga por eixo x Fsc (kN)	Nº de repetições previstas	Nº de repeticões admissíveis	Consumo de Fadiga (%)	Nº de repeticões admissíveis	Consumo de Fadiga (%)
			To	ensão equivalente:	1,045		•
Eix	o Simples			Fator de fadiga:	0,232		
				Fator de erosão:	2,198		
5,0	7,6	74,1	379.193	ilimitado	0,0	ilimitado	0,0
6,3	9,5	92,7	1.516.772	ilimitado	0,0	ilimitado	0,0
8,40	12,6	123,6	379.193	ilimitado	0,0	ilimitado	0,0
10,5	15,8	154,5	1.516.772	ilimitado	0,0	3.980.000	38,1

Com base nos cálculos efetuados (Tabela 4.8) observa-se que para a carga por eixo de 10,5tf na análise de fadiga (Figura 4.10) e erosão (Figura 4.11) os valores são aceitáveis. Isso porque o número de repetições admissíveis é maior que o número de repetições previstas.

Com base nos cálculos efetuados (Tabela 4.8) a espessura de pavimento poderia ser alterada para uma concepção apresentada na Figura 4.12.

Figura 4.12 - Estrutura típica do Pavimento Rígido (**Sugestão não adotada**)

De forma análoga, o dimensionamento permaneceu com a utilização da camada de reforço do subleito com 15 cm de espessura com objetivo de intercalar uma camada com rigidez intermediária entre a camada de subleito e a camada de concreto rolado.

Com a impossibilidade de redução da placa de concreto, optou-se por permanecer o dimensionamento proposto no item 4.2 e apresentado de forma sucinta na Figura 4.8.

4.4. BARRAS DE TRANSFERÊNCIAS NA JUNTAS TRANSVERSAIS

As barras de transferência combinadas às juntas transversais são importantes dispositivos de controle, e têm o objetivo principal de transmitir as cargas de uma placa para outra, permitindo os trabalhos de dilatação e contração do concreto, e também evitando o surgimento de desníveis ou degraus entre as placas. As barras devem possuir uma extremidade engastada em uma das placas e outra deslizante, simplesmente encaixada, na outra placa (Figura 4.7).

O projeto das barras de transferência foi elaborado com base na Tabela 4.6 foram utilizadas barras de aço CA-25 lisas com diâmetro de 25 milímetros e comprimento de 50 centímetros; com espaçamento entre as barras de 25 centímetros, totalizando uma média de 12 barras por junta; com 27 centímetros da barra pintada e engraxada para não aderir ao concreto; e apoiadas sobre caranguejos de aço CA-60 na altura média das placas, 12 centímetros (Figura 5.8). Foram utilizadas barras de 50 cm de comprimento por ser esse o comprimento das barras comerciais prontas para fornecimento.

Tabela 4.6 – Barras de transferência

Espessura da Placa (cm)	Diâmetro da barra (mm)	Comprimento da barra (mm)	Espaçamento entre barras (mm)	
<17,0	20	460	300	
17,5 – 22,0	25	460	300	
22,5 - 30,0	32	460	300	
>30,0	40	460	300	

Fonte: Manual de Pavimentos Rígiodos do DNIT – Quadro 33

Figura 4.7 - Detalhe das barras de Transferência

4.5. JUNTAS TRANSVERSAIS

As juntas transversais têm a finalidade de induzir a fissuração das placas devido à retração do concreto e, por isso, constituem importante mecanismo para assegurar a estabilidade da estrutura. Em planta, as placas de concreto apresentam quatros metros de largura e as juntas transversais aparecem a cada seis metros aproximadamente.

As ranhuras transversais devem ser serradas com seis milímetros de espessura e cinco centímetros de profundidade aproximadamente. Para finalizar o processo, após a limpeza das fendas faz-se o fechamento com selante a base de poliuretano (Figura 4.8). Vale destacar, ainda na Figura 4.9, a fissuração induzida entre das placas de concreto.

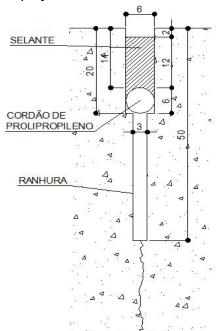


Figura 4.8 - Detalhe do projeto das ranhuras transversais (medidas em mm)

Figura 4.9 - Detalhe da junta transversal selada

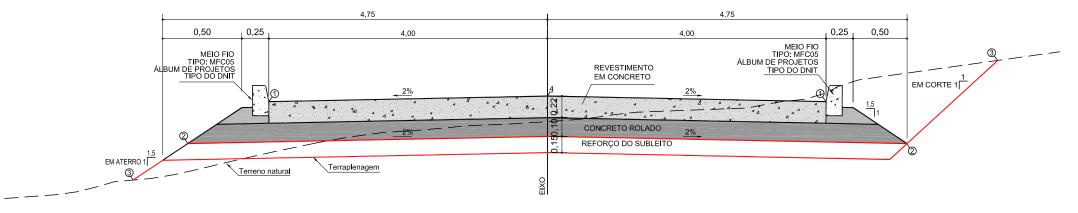
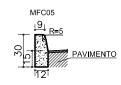

Com base no dimensionamento apresentado neste item, foi obtido o quantitativo que está resumidamente exposto na Tabela 4.6.

Tabela 4.6 – Tabela resumo dos quantitativos dos serviços – Pavimento Rígido

ITEM	CÓDIGO	DISCRIMINAÇÃO DO SERVIÇO		UNID.	QUANTIDADE
1.		PAVIMENTO RIGIDO			
1.1	2 S 02 110 00	Regularização do subleito		m²	253
1.2	2 S 02 100 00	Reforço do subleito (ISC ≥ 20%, 100% PI (Proctor Intermediário)	8,12	m³	1.883
1.3	2 S 02 603 50	Concreto rolado AC/BC	5,12	m²	1.210
1.4	2 S 02 606 50	Concr.de cimento portl.com fôrma deslizante AC/BC	5,12	m²	2.460

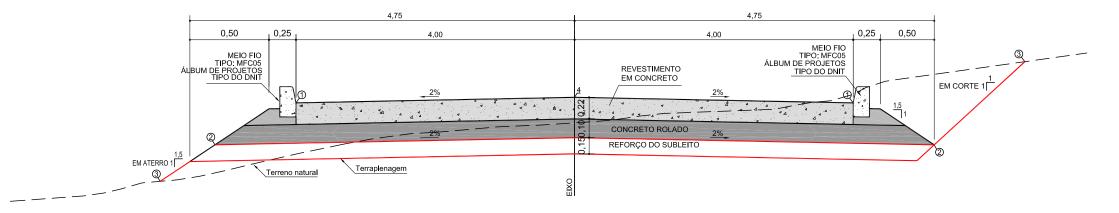
A seguir se apresentam as seções transversais relativas a cada eixo de implantação em Pavimento Rígido

SEÇÃO TRANSVERSAL EIXO 49, 53 e 61



CAIMENTO DUPLO

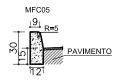
CORRESPONDÊNCIA COM A NOTA DE SERVIÇO


- ③ OFFSET LADO ESQUERDO
- 2 LATERAL ESQUERDA
- ① BORDO ESQUERDO
- 4 EIXO
- ① BORDO DIREITO
- ② LATERAL DIREITA
- ③ OFFSET LADO DIREITO

- 1 DESENHO SEM ESCALA (SECCIONADO)
- 2 PONTOS FORNECIDOS NA NOTA DE SERVIÇO, MODELO DO IPDF, ESTÃO INDICADOS COM \bigcirc
- 3 NOS TRECHOS COM SUPERELEVAÇÃO, AS DECLIVIDADES DA SEÇÃO, SERÃO, CONFORME A NOTA DE SERVIÇO.
- 4 VALORES EM METROS

CONSUMOS MÉDIOS				
ESCAVAÇÃO	<0,05m/m			
CONCRETO fck ≽ 11 MPa	0,034m/m			
FORMAS DE MADEIRA COMUM	0,63m/m			

SEÇÃO TRANSVERSAL EIXO 54, 55, 56, 57, 59, 60 e 64



CAIMENTO DUPLO

CORRESPONDÊNCIA COM A NOTA DE SERVIÇO

- ③ OFFSET LADO ESQUERDO
- ② LATERAL ESQUERDA
- ① BORDO ESQUERDO
- 4 EIXO
- 1) BORDO DIREITO
- ② LATERAL DIREITA
- ③ OFFSET LADO DIREITO

- 1 DESENHO SEM ESCALA (SECCIONADO)
- 2 PONTOS FORNECIDOS NA NOTA DE SERVIÇO, MODELO DO IPDF, ESTÃO INDICADOS COM \bigcirc
- 3 NOS TRECHOS COM SUPERELEVAÇÃO, AS DECLIVIDADES DA SEÇÃO, SERÃO, CONFORME A NOTA DE SERVIÇO.
- 4 VALORES EM METROS

CONSUMOS MÉDIOS				
ESCAVAÇÃO	≤0,05m/m			
CONCRETO fck ≥ 11 MPa	0,034m/m			
FORMAS DE MADEIRA COMUM	0,63m/m			

5. ESPECIFICAÇÕES TÉCNICAS DE MATERIAIS E SERVIÇOS

A execução dos serviços de pavimentação deverá seguir rigorosamente as instruções de execução e especificações de materiais apresentadas nas normas técnicas do DNIT, sem as quais este dimensionamento não terá validade.

5.1. CONCRETO ASFÁLTICO

Será utilizado como revestimento do pavimento flexível. Será executado em concreto betuminoso usinado a quente. Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela NORMA DNIT 031/2006 - ES.

Dentre as recomendações contidas na especificação, destacam-se as seguintes.

Tabela 5.1 – Condições técnicas para confecção de CBUQ

Material	Especificação	Norma	
Ligante	CAP 50/70	DNER-EM 205	
Agregados graúdos	Fragmentos sãos de rochas, escória ou seixo rolado, duráveis, livres		
	de torrões de argila e substâncias nocivas		
Desgaste Los Angeles	Igual ou inferior a 50%	DNER-ME 035	
Índice de forma	Superior a 0,5	DNER-ME 086	
Durabilidade	Perda inferior a 12%	DNER-ME 089	
Agregados miúdos	Areia ou pó de pedra com grãos resistentes, ap		
	moderada angulosidade, livres de torrões de argila e substâncias nocivas		
Equivalente de areia	Igual ou superior a 55%	DNER-ME 054	
Filler	Cimento Portland, cal extinta, pó calcáreo ou cinza volante.		
Granulometria	Ver Tabela 5.2	DNER-ME 083	
Composição da mistura			
Granulometria e teor	Ver Tabela 5.3	DNER-ME 083	
de betume		DNER-ME 053	
Porcentagem de	3 a 5%	DNER-ME 043	
vazios			
Relação	75 a 82%		
betume/vazios			
Estabilidade mínima	500 kgf (75 golpes)		
Resistência à Tração	0,65	DNER-ME 138	
por Compressão			
Diametral estática a			
25°C, mínima, MPa			

Tabela 5.2 - Granulometria do material de enchimento (filler)

Peneira	% mínima passando
N° 40	100
N° 80	95
N° 200	65

Tabela 5.3 - Granulometria e teor de ligante da mistura

Peneira de malha quadrada		% passando, em		
Discriminação	Abertura mm	peso Faixa C	Tolerâncias	
1 ½"	38,1	100	±7%	
1"	25,4	100	±7%	
3/4"	19,1	100	±7%	
1/2"	12,7	80-100	±7%	
3/8"	9,5	70-90	±7%	
N° 4	4,8	44-72	±5%	
N° 10	2,0	22-50	±5%	
N° 40	0,42	8-26	±5%	
N° 80	0,18	4-16	±2%	
N° 200	0,074	2-10	±2%	
Betume solúvel no CS2(+), em %		4,5-9,0	±0,3%	

5.2. PLACAS DE CONCRETO DE CIMENTO PORTLAND

Será utilizado com revestimento do pavimento rígido. A pista de locação das placas não possui acostamento de concreto e as juntas transversais entre as placas são dotadas de barras de transferência.

O concreto deve atender aos seguintes requisitos básicos:

- Resistência à tração na flexão ($f_{ctm,k}$), medida aos 28 dias, igual a 4,5 MPa;
- Dimensão máxima característica do agregado graúdo ($D_{m\acute{a}x}$) deve ser de 32 milímetros:
- O abatimento, medido pelo ensaio do tronco de cone, deve estar dentro da faixa de 40 a 60 milímetros, apresentando trabalhabilidade compatível com o equipamento de aplicação e conformação da argamassa, neste caso a régua ou forma deslizante;
- Utilização de aditivo plastificante e incorporador de ar.

A dosagem experimental do concreto ainda deve respeitar uma relação água/cimento menor ou igual a 0,55 e um teor de ar menor ou igual a 5%.

Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela especificação DNIT-ES 049/2009 – Execução de Pavimento Rígido.

5.3. CAMADA DE CONCRETO ROLADO

Será empregado como sub-base do pavimento rígido.

Será constituído de concreto de cimento portland compactado com rolo com 10 cm de espessura.

Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela especificação DNIT-ES 056/2004 – Sub-base de Concreto de Cimento Portland Compactado com Rolo.

5.4. BRITA GRADUADA

Será utilizada como base do pavimento flexível. Poderá ser escolhida qualquer uma das faixas granulométricas (A, B, C ou D), desde que respeitadas as tolerâncias especificadas.

Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela especificação DER-SP ET-DE-P00/008.

5.5. SOLO CAL

Será utilizada como subbase do pavimento flexível e reforço do subleito do pavimento rígido.

Será executada com solo fino laterítico adicionado de cal. A porcentagem de cal a ser incorporada ao solo é determinada em relação a massa de solo seco, de forma que a mistura apresente um *ISC* superior a 20% e expansão inferior a 1,0% na energia intermediária e possuir granulometria que no mínimo 60% passe na peneira de abertura de 2,0 mm.

Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela especificação DER-SP ET-DE-P00/005.

5.6. IMPRIMAÇÃO BETUMINOSA

Nos pavimentos com revestimento em concreto asfáltico, será executada imprimação betuminosa sobre a camada de base.

Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela NORMA DNIT 144/2010 - ES.

5.7. PINTURA DE LIGAÇÃO

Nos pavimentos com revestimento em concreto asfáltico, sobre a imprimação betuminosa e antes da aplicação do revestimento será executado pintura de ligação.

Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela NORMA DNIT 145/2010 - ES.

5.8. REGULARIZAÇÃO DO SUBLEITO

O subleito deve ser compactado a 100% da energia do ensaio proctor normal.

Observa-se que caso durante a execução dos serviços forem encontrados materiais com expansão superior a 2% ou ISC inferior ou igual ao valor de projeto (ISC_P=7,0), deverá ser realizado um estudo específico do local, avaliando-se a possibilidade de substituição de material ou execução de camada de reforço.

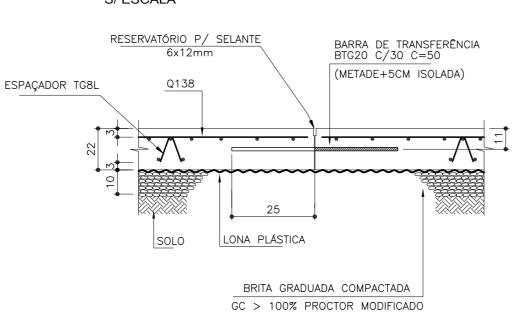
Os materiais utilizados, os equipamentos necessários, o processo executivo, o controle e a aceitação do serviço serão balizados pela NORMA DNIT 137/2010 – ES.

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

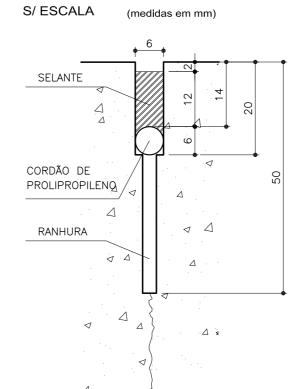
CREA-DF

ART Obra ou serviço 0720140038406

Conselho Regional de Engenharia e Agronomia do Distrito Federal

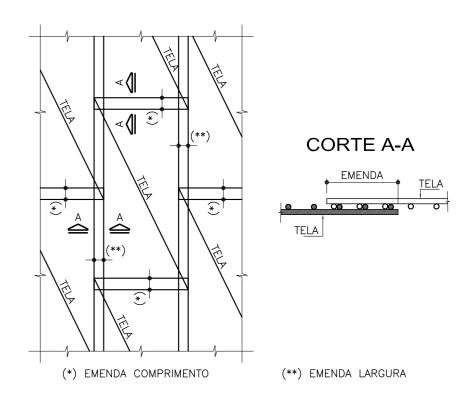

JAIRO FURTADO NOGUEIR	A	1			
Título profissional: Engenheiro Civil				RNP: 0704	215225
				Registro: 14	
2. Dados do Contrato					
Contratante: AeT Arquitetura P	lanciamento e	Transporter I tel			
		ransportes Ltd.	d	CPF	/CNPJ: 01.136.983/0001-5
SEUPS 705/905 Conj A Salas 135, 137 e 139	Número: 135		Bairro: Asa Sul	055	70200 055
Cidade: Brasilia	UF: DF			CEP	: 70390-055
	UF; DF		Complemento:		
E-Mail: ana-parisi@uol.com.br Contrato:			Fone: (61)32420564		Ser 200 Mariani
Vinculada a ART:			Celebrado em: 12/02/2014		r Obra/Serviço R\$: 16.000,0
	Anlindual		Tipo de contratante: Pessoa	a Juridica de	Direito Privado
Ação institucional: Nenhuma/Não	Aplicavel				
B. Dados da Obra/Serviço					
SHCE/S QD 803, BL C, LOJA 10, CL Parte A-39	Número: 39		Bairro: Cruzeiro	CEP	70655-833
Cidade: Cruzeiro	UF: DF		Complemento:		
Data de Inicio: 12/02/2014	Previsão término	: 11/08/2014	Coordenadas Geográficas:		
Finalidade: Infra-estrutura			Código/Obra pública:		
Proprietário: Hasaan Engenhari	a Ltda		CPF/CNPJ: 15.378.369/00	01-00	
E-Mail: leonardo.neiva1@gmail			Fone: (61) 99742080		
. Atividade Técnica					
Realização				Quantidade	Unidade
Projeto Estudo Geotécnico	1			58,9800	metros quadrados
Projeto Pavimento flexível asfáltic	a			253,8600	metros quadrados
Projeto Pavimento flexível asfáltico		l.o.		58,9800	metros quadrados
Projeto Pavimento rígido asfáltica				253,8600	metros quadrados
Projeto Pavimento rígido asfáltica				2.134,3560	metros quadrados
Projeto Pavimento rígido asfáltica				58,9800	metros quadrados
Projeto Trafego Rodoviario				253,8600	metros quadrados
Projeto Trafego Rodoviario Projeto Trafego Rodoviario				2.134,3560	metros quadrados
Projeto Estudo Geotécnico				58,9800	metros quadrados
Projeto Estudo Geotécnico				253,8600	metros quadrados
Projeto Pavimento flexível asfáltica				2.134,3560	metros quadrados
		ades técnicas o ni	rofissional deverá proced	2.134,3560 er a baiya di	metros quadrados
Observações -	and direct	130/11000 0 pi		o, a baixa ut	Joid AIVI
Γ10 - Interseção da Av. Centra	L(EPTG) com	EPCT (DE-001)	T15 - Complementees	do Cintome 1	liário do ECDM
ras; T16 - Complementação s	Sistema Viário d	o SMAS e Hipíca.		io Sistema V	/lario da ESPIVI com a
. Declarações					00/10
Qualquer conflito ou litígio originado	do presente contra	to, bem como sua inte	erpretação ou execução, será	resolvido	new full loon
oor arbitragem, de acordo com a Lei de arbitragem que, expressamente, a	nº 9.307, de 23 de	setembro de 1996, n	os termos do respectivo regula	amento /	Profissional
	an parton docidion	oonoordar.		//	your my
					Contratante
Acessibilidade: Sim: Declaro atendim de 2004.	ento às regras de	acessibilidade, previs	tas nas normas técnicas da A	BNT e no Decr	reto nº 5.296, de 2 de dezemb
Entidade de Classe			r9. Informações		
SENGE-DF			- A ART é válida somente qu	ando quitada	mediante ancesentação do
Assinaturas—			comprovante de pagamento	ou conferência	a no site do Crea.
Declaro serem verdadeiras as inform	acões acima		A autenticidade deste documento pode ser verificada no site ou www.confea.org.br A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vinculo		
BRASILIA 18 de JU	₩ de 2	d4			
ocal Lind Lind	Data	,	contratual.		
IAIRO FURTADO NOGUEIRA - CP	834,771.793-15	_			
- rotinga	1)				
AeT Arquitetura Planejamento e Tran 01.136.983/0001-50	sportes Ltda - CPF	/CNPJ:	www.creadf.org.br informac	20@0000#6	h (281

7. PLANTAS

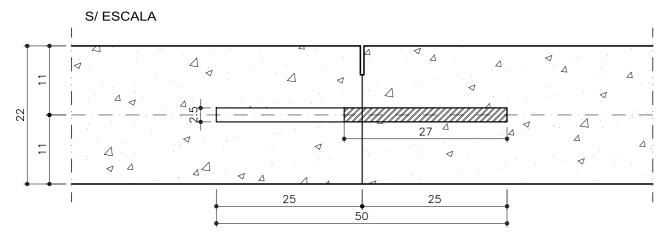

S/ ESCALA RESERVATÓRIO P/ SELANTE 6x12mm BARRA DE TRANSFERÊNCIA BTG20 C/30 C=50 POSICIONAR E AMARRAR A BTG20 NA TRELIÇA (METADE+5CM ISOLADA) ESPAÇADOR TG8L CARANGUEJO 20 20 25 LONA PLÁSTICA BRITA GRADUADA COMPACTADA GC > 100% PROCTOR MODIFICADO

J.S. (JUNTA SERRADA)

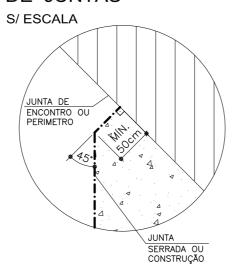
J.C. (JUNTA DE CONSTRUÇÃO) S/ ESCALA



Detalhe das Ranhuras Transversais (B)

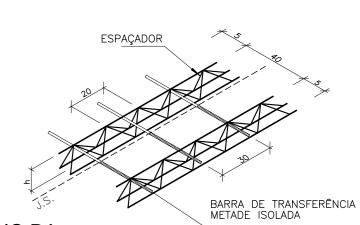


DETALHE GENÉRICO POSICIONAMENTO DAS TELAS SOLDADAS - PARA AS PLACAS

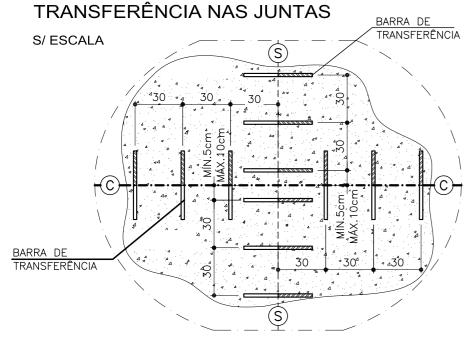

S/ ESCALA

DETALHE DAS BARRAS DE TRANSFERÊNCIA

COMPRIMENTO MÍNIMO DE JUNTAS

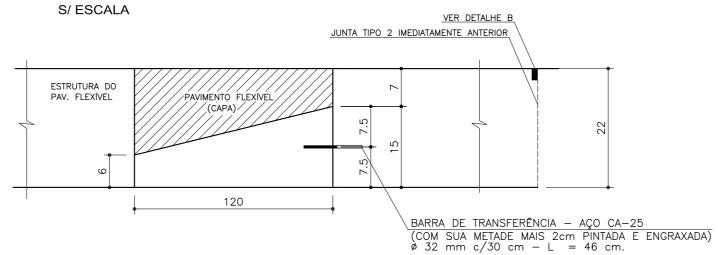


JUNTA LONGITUDINAL DE CONSTRUÇÃO NO ENCONTRO DO PAVIMENTO RÍGIDO COM O FLEXÍVEL

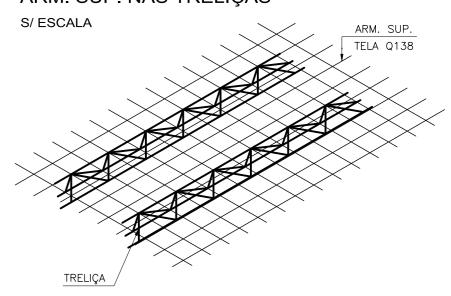


DETALHE-POSICIONAMENTO DAS BARRAS DE TRANSF. NAS JUNTAS SERRADAS (J.S.)

S/ ESCALA



POSICIONAMENTO DE BARRAS DE

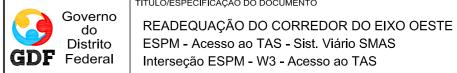


OBS.: O POSICIONAMENTO DAS BTGs DEVERÁ FORMAR OBRIGATORIAMENTE UM ÂNGULO DE 90° COM AS JUNTAS.

JUNTA DE TRANSIÇÃO TRANSVERSAL, NO ENCONTRO DO PAVIMENTO RÍGIDO COM O FLEXÍVEL.

DETALHE P/ APOIO DA ARM. SUP. NAS TRELIÇAS

Na qualidade de executor do Contrato nº013/2013-SO, firmado entre a Secretaria de Estado de Obras do DF e o Consórcio Transoeste,


ATESTO

que os projetos executivos para a readequação do corredor de transporte público do Eixo Oeste do Distrito Federal, em sistema BRT, e vias complementares ao sistema, contemplando estudo de tráfego, projetos de urbanismo, geometria, terraplenagem, pavimentação, drenagem, obras de artes especiais, paisagismo, sinalização, projeto de implantação e orçamento foram recebidos e e aprovados.

Marise Pereira da Encarnação de Medeiros matricula nº 260.930-4 Executora

Clécio Nonato Rezende matricula nº 261.822-2 Executor

Secretaria de Obras TÍTULO/ESPECIFICAÇÃO DO DOCUMENTO

PRISMA Consultoria		
Arquitetura Planejomento e Transportes Ltda.		

۱۱ ۲				
	ETAPA D	EXECUTIVO	BRASÍLIA	PROJETO
_	ESCALA	SEM ESCALA		CÁLCULO
	FOLHA	2/2	ESPECIALIDADE/SUBESPECIALIDADE PROJETO DE PAVIMENTAÇÃO DETALHES	DESENHO
	REVISÃO)	CÓDIGO	DATA NOVEMBRO/2014